PASSIVE WALKER RL: FROM FSM TO JAX/BRAX

EXPERT CONTROLLERS & SCALABLE RL

Yunus Emre Danabaş

MECHATRONIC ENGINEERING SABANCI UNIVERSITY

JULY 17, 2025

OUTLINE / AGENDA

- Introduction & Motivation
- Methodology
- Results & Discussion
- Impact & Ethical Issues
- Project Management & Timeline
- Conclusion & Future Work
- Appendix

Introduction & Motivation

- Legged locomotion remains a challenging control problem:
 - ► High-dimensional dynamics, contact events, underactuation
 - ► Sample-inefficient exploration in standard RL
- Expert demonstrations can bootstrap learning and ensure safety
- JAX/Brax offers GPU-accelerated, vectorised simulation for fast RL
- Goal: combine rule-based experts with modern RL for efficient, robust passive walking

PROBLEM STATEMENT

- Design a control pipeline for a planar passive walker:
 - Leverage a finite-state expert for stable baseline gait
 - Learn a differentiable policy via behaviour cloning (BC)
 - Fine-tune with Proximal Policy Optimization (PPO)
- Achieve both sample efficiency and high final performance
- Scale up training using a vectorised JAX/Brax implementation
- Systematically explore hyperparameters to identify robust configurations

KEY CONTRIBUTIONS

- Expert-to-RL Pipeline: FSM → Behaviour Cloning → BC-seeded PPO for "walk-from-day-one" learning
- 2. **Imitation-Regularised PPO:** Clipped surrogate loss augmented with decaying BC term for stability
- Vectorised JAX/Brax Pipeline: High-throughput, GPU-accelerated simulation enabling large-scale experiments
- 4. Large-Scale Hyperparameter Sweep: 120-job grid over reward scaling, learning rate, network capacity
- Open-Source Release: github.com/yunusdanabas/passive_walker_rl

PHYSICS MODEL & SIMULATION SETUP

- **MuJoCo model:** 5 bodies, 7 DoFs (planar slide x, z, yaw hinge, hip hinge, two prismatic knees)
- **Virtual ramp:** gravity tilted 11.5° downhill
- **Simulation:** physics timestep = 1 ms; control at 200–1 000 Hz

JOINTS & ACTUATORS

Туре
prismatic
prismatic
hinge
hinge
prismatic
prismatic

Ranges: slide x, z, yaw, hip unbounded; knees ± 0.30 m.

Actuator	k _p
hip_act	5
left_knee_act	1000
right_knee_act	1000

Control range: hip \pm 0.5 rad; knees \pm 0.3 m.

EXPERT FINITE-STATE CONTROLLER

FSM LOGIC (DETAILED CONDITIONS)

■ Hip Controller:

- Phase: one leg swings, the other supports.
- ► Switch when:
 - Swing foot contacts ground ($z_{foot} < 0.05 \,\mathrm{m}$),
 - And trunk returns upright (pitch < o).</p>
- ► Action: desired hip angle toggles between \pm 0.3 rad.

■ Knee Controller:

- ► States: **Stance** (extended) vs. **Retraction** (bent).
- ► To Retract:
 - Opposite foot has just landed ($z_{other foot} < 0.05 \,\mathrm{m}$),
 - And local thigh upright (pitch < o).</p>
- ► To Extend:
 - Swing leg has moved forward past neutral (hip pitch > threshold).
- ▶ Positions: retracted = $+0.30 \, \text{m}$, stance = $0 \, \text{m}$.

FSM KINEMATICS SUMMARY

(a) Joint Angles & Velocities

(c) Foot-Ground Contact

(b) Torso Pitch & Speed

(d) Center of Mass Path

Figure: Expert FSM reference trajectories: (top) joint kinematics and 8 pottom) foot contact timing and CoM trajectory.

BEHAVIOUR CLONING PIPELINE

■ Variants explored:

- ► Hip-only BC
- ► Knees-only BC
- ► Full BC (hip + both knees) with four loss functions: MSE, Huber, L1, Combined
- **Data:** \sim 10⁵ expert steps at \sim 10³ Hz from FSM \rightarrow observations (11 dims) expert actions (3 dims)
- Model: 2-layer ReLU MLP (256 hidden units)
- Training: $\mathcal{O}(10^5)$ samples, $\sim 10^2$ epochs, batch ~ 64 , $\alpha \sim 10^{-4}$

BC Prediction vs. True FSM Actions

- Scatter of BC predictions versus FSM labels shows tight clustering around y = x for both joints.
- Indicates low bias and accurate reproduction of expert commands across the gait cycle.
- Used 100,000 samples and three loss variants (MSE, Huber, L1, combined).

BC LOSS VARIANTS: VISUAL COMPARISON

BC Loss Variants: Key Insights

■ Training Loss Convergence:

- ► All four loss functions (MSE, Huber, L1, Combined) converge over 100 epochs.
- Huber and L1 exhibit slightly smoother decay and robustness to outliers.

■ Evaluation Reward:

- Huber-trained policy achieves the highest total reward when deployed.
- Combined loss performs comparably but with greater variance.

■ Action Distribution:

- MSE yields tightly concentrated actions around the expert mean.
- Combined loss produces a broader distribution, indicating exploratory behavior.

■ Training Efficiency:

- ► MSE and Huber are fastest per epoch.
- L1 and Combined incur minor extra cost due to additional absolute/huber computations.

PPO FINE-TUNING STRATEGIES

PPO FINE-TUNING OVERVIEW

- Actor (π_{θ}) : small MLP, one hidden layer
- Critic (V_{ϕ}): two-layer MLP

- Rollouts: on-policy data
 - + GAE
- **Updates**: PPO clip + $\beta(t)$ -regularisation

PPO UPDATE ALGORITHM

```
Require: \theta, \phi, \beta<sub>o</sub>
  1: for iteration = 1...N do
             \mathcal{B} \leftarrow \mathsf{CollectTrajectories}(\pi_{\theta})
  3: \{\hat{A}, \hat{R}\} \leftarrow \mathsf{GAE}(\mathcal{B}.\mathsf{rewards}, \mathcal{B}.\mathsf{dones}, V_{\phi}(\mathcal{B}.\mathsf{obs}))
  4: for epoch = 1...K do
                     for all mini-batch b \subset \mathcal{B} do
  5:
                            L_{\text{clip}} \leftarrow \mathsf{PPOCLIP}(b, \pi_{A}^{\text{old}}, \hat{A})
  6:
                            L_{\rm bc} \leftarrow \|\pi_{\theta}(b.{\rm obs}) - b.{\rm bc\_targets}\|^2
  7:
                            L \leftarrow L_{\rm clip} + \beta(t) L_{\rm bc}
  8:
                            \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathbf{L}
  9:
                     end for
10:
        end for
 11:
12: \phi \leftarrow \phi - \alpha_{\mathsf{V}} \nabla_{\phi} || V_{\phi}(\mathcal{B}.\text{obs}) - \hat{R} ||^2
13: \beta(t+1) \leftarrow \text{Decay}(\beta(t))
 14: end for
```

PPO + BC Loss Functions

Clipped Surrogate Objective

$$L_{\mathrm{PPO}} = -\mathbb{E}_t \Big[\min \big(r_t \, \hat{A}_t, \ \mathrm{clip} \big(r_t, 1 - \epsilon, 1 + \epsilon \big) \, \hat{A}_t \big) \Big], \quad r_t = \frac{\pi_{\theta}(a_t | o_t)}{\pi_{\theta_{\mathrm{old}}}(a_t | o_t)}$$

Total Loss with BC Regularisation

$$L_{\mathrm{total}} = L_{\mathrm{PPO}} + \beta(t) \mathbb{E}_{t} [\|\pi_{\theta}(o_{t}) - a_{t}^{\mathrm{BC}}\|^{2}], \quad \beta(O) = \beta_{O}, \ \beta(N) \to O.$$

15 | 3

IMITATION WEIGHT ANNEALING

- \blacksquare $\beta(o) = \beta_o > o$: strong imitation early
- \blacksquare $\beta(t) \downarrow$ o: pure PPO later
- Balances stability vs. exploration

BC-SEEDED VS SCRATCH PPO

BC-seeded PPO

- Policy initialised from BC weights
- Imitation term $\beta(t) > 0$ early
- Faster convergence to walking gait
- Smaller batch sizes, fewer env steps

Scratch PPO

- Random policy initialization
- No imitation regularisation $(\beta(t) \equiv 0)$
- Requires more exploration
- Longer training to reach stability

TRAINING FLOW RECAP

- 1. **Rollouts:** collect on-policy trajectories under π_{θ}
- 2. Advantage Estimation: compute \hat{A} , \hat{R} via GAE
- 3. **Policy Update:** clipped PPO + $\beta(t)$ BC loss
- 4. **Critic Update:** regress V_{ϕ} to returns \hat{R}
- 5. **Annealing:** linearly decay imitation weight $\beta(t)$

Repeat for N iterations

VECTORISED JAX/BRAX PIPELINE

PIPELINE OVERVIEW

- MuJoCo → Brax: Parse your passive walker XML via brax.io.mjcf.load model into a JAX-native System.
- Environment Wrapper: BraxPassiveWalker inherits PipelineEnv, implements reset / step in pure JAX.
- PD Control & Reward: $\tau = K_p(q_{\text{targ}} q) K_d \dot{q}$, reward = Δx , terminates on low torso height or large pitch.
- **Vectorisation & JIT:** Compile once with jax.jit, run vmap over N envs in parallel.
- Train with PPO: Call brax.training.agents.ppo.train on batched data for maximum throughput.

BRAXPASSIVEWALKER: reset

```
def reset(self. rng):
1
        # 1) sample initial noise on joints
        rng, sub = jax.random.split(rng)
        noise = (2*jax.random.uniform(sub,(3,))-1)*self.reset noise
              = self.sys.init g.at[self.act idx].add(noise*self.action scale)
        qo
              = inp.zeros like(self.svs.init ad)
        ado
        # 2) initialize pipeline state
8
        ps = self.pipeline init(qo, qdo)
9
10
        # 3) return Brax State
        return State(
          pipeline_state=ps,
13
          obs=self._get_obs(ps),
14
          reward=0.0.
15
16
          done=0.0,
          metrics={"prev x": ps.x.pos[0.0]}
17
18
```

- Randomises hip and knees within ±reset noise
- Builds initial Brax pipeline state → position + velocity
- Packs into State with obs. reward, done, metrics

BRAXPASSIVEWALKER: step

```
def step(self, state, action):
    # 1) PD controller
    act scaled = jnp.clip(action,-1,1)*self.action scale
            = state.pipeline state.g[self.act idx]. state.pipeline state.gd[self.
   q, qd
         act_idx]
    tau
              = self.kp*(act scaled - g) - self.kd*gd
    # 2) forward simulation
    ps next = self.pipeline step(state.pipeline state, tau)
    # 3) reward & done
          = ps next.x.pos[0,0] - state.metrics["prev x"]
    height ok = ps next.x.pos[0.2] > 0.5
    pitch ok = abs(quat to euler(ps next.x.rot[0])[1]) < 0.8
    done_flag = jnp.logical_not(height_ok & pitch_ok)
    # 4) pack next state
    return state.replace(
     pipeline state=ps next.
     obs=self. get obs(ps next),
      reward=dx.
     done=done flag.astype(jnp.float32),
     metrics={"prev x": ps next.x.pos[0.0]}
```

- PD torques: $\tau = K_D(a_{\text{target}} q) K_d \dot{q}$
- **Reward:** forward progress Δx

6 7

8

9

10

11

12

13 14

15

16

17

18

19

20

- Termination: torso height < 0.5 m or pitch || 0.8 rad
- State replace: updates obs, reward, done, and prev_x

HIGH-THROUGHPUT TRAINING

- Massive sweep: 120 PPO jobs × 24M steps each (few hours on RTX 4060 Ti).
- Parallel simulators: 128 envs in lock-step via vmap → ×100 speed-up vs. loop.
- **Compile once:** JAX JIT fixes the compute graph, reuses across all envs iterations.
- **Toolchain:** Brax for physics, Flax/Equinox for networks, Optax for optimizers.
- **Reproducible logging:** msgpack payloads, deterministic seeds, helper scripts for aggregate plots.

EXPERIMENTAL SWEEP DESIGN

EXPERIMENTAL SWEEP DESIGN

■ Goals:

- ► Find the single best hyper-parameter configuration
- Analyse trends over reward scale, learning rate and network size
- **Grid:** 3 seeds × 2 reward scales × 4 LRs × 5 architectures = 120 jobs
- **Metrics:** final episode reward (mean ± std over seeds), wall-clock time, stable completions

Dimension	Values (count)
Seeds Reward scale Learning rate Architectures	{0,1,2} (3) {0.5,1.0} (2) {1e-3,5e-4,1e-4,1e-5} (4) {tiny,small,medium,deep,deepXL} (5)
Total runs	120

Table: Sweep grid dimensions (values in braces).

23

SWEEP RESULTS: REWARD SCALE & LEARNING RATE TRENDS

Figure: Mean ± std reward vs. reward scale

Figure: Mean ± std reward vs. learning rate

KEY INSIGHTS & BEST CONFIGURATION

Best Hyper-Parameter Configuration

- Highest mean reward across seeds
- Shows that moderate reward scaling and a higher learning rate perform best
- Typical wall-clock: ~2–10 min per job on RTX 4060 Ti
- All 120 jobs completed successfully (no simulator crashes)

Guideline for future experiments: start with medium+LR=1e-3+scale=0.5.

RESULTS & DISCUSSION

BEHAVIOUR CLONING PERFORMANCE

- **BC variants:** hip-only & knee-only (context), focus on full BC (hip + knees)
- Losses compared: MSE, Huber, L1, Combined

Figure: Hip: BC vs. FSM labels

Figure: Knee: BC vs. FSM labels

BC LOSS VARIANT COMPARISON

Figure: Training loss, evaluation reward, action-density and runtime for each BC objective

PPO FINE-TUNING PERFORMANCE

- **BC-seeded PPO** converges in \sim 50% of the iterations vs. scratch PPO
- **Scratch PPO** achieves similar final gait but needs $\times 2-\times 3$ more samples
- Decaying imitation weight $\beta(t)$ stabilises early training

HYPERPARAMETER SWEEP: AGGREGATED TRENDS

Figure: Mean±std reward vs. reward scale

Figure: Mean±std reward vs. learning rate

DISCUSSION & KEY TAKEAWAYS

- **Behaviour Cloning:** Huber loss offers best trade-off of bias vs. robustness
- Imitation-seeded PPO: drastically cuts sample complexity and speeds convergence
- **Sweep guidelines:** medium networks, LR=1e-3, scale=0.5 for strong performance
- **High-throughput pipeline:** vectorised JAX/Brax makes such large sweeps practical

30

IMPACT & ETHICAL ISSUES

IMPACT

- Accelerated Research: "Walk-from-day-one" imitation jump-starts RL in legged locomotion.
- Open-Source Toolkit: JAX/Brax pipeline + scripts for large-scale sweeps released on GitHub.
- **Broader Applications:** Assistive robotics, search-and-rescue, exploratory platforms.
- **Efficiency Gains:** Vectorised simulation achieves ×100 speed-up vs. naive loops.

ETHICAL ISSUES

- **Real-World Safety:** Simulator-to-robot gap demands rigorous hardware safety checks.
- **Bias in Demonstrations:** FSM expert encodes narrow gait patterns—limits generalisation.
- **Compute Footprint:** 120-job sweep deep training consume GPU hours—track budgets.
- **Dual-Use Risks:** Legged controllers may be repurposed for surveillance or military.
- Transparency & Reproducibility: Full code, configs, logs published; encourage peer verification.

PROJECT MANAGEMENT & TIMELINE

PROJECT MANAGEMENT

- Solo Effort: All design, implementation, experiments by the author
- Learning Curve: JAX/MuJoCo/Brax resources sparse—many tools mastered from scratch
- Challenges: XML→Brax compatibility, PD tuning, large-scale sweep orchestration
- **Resources:** Initial work on CPU laptop; final deep runs on RTX 4060 Ti workstation
- **Deliverables:** Well-organized GitHub repo with code, data, scripts, and documentation

TIMELINE

Phase	Activities
FSM & Data Col- lection	Expert FSM design, MuJoCo demos, dataset logging
Behaviour Cloning	MLP architecture, loss variants, BC training
PPO Fine- Tuning	BC-seeded & scratch PPO, ablation studies
Brax Port & Hy- perparameter Sweep	MJCF→Brax conversion, 120-job PPO grid
Write-up & Re- lease	Report chapters, presentation, open-source push

CONCLUSION & FUTURE WORK

CONCLUSION

- **Pipeline Success:** FSM→BC→PPO→Brax achieved robust passive walking "from day one."
- **Sample Efficiency:** Imitation regularisation halved RL training steps vs. scratch.
- **Scalability:** JAX/Brax vectorisation made 24 M-step sweeps feasible in hours.
- Open Science: All code, models, results publicly available for community reuse.

FUTURE WORK

- **Complex Terrain:** Extend to uneven ground, stairs, and variable slopes.
- **Hardware Validation:** Transfer policies to real robot—study sim-to-real gaps and safety.
- **Domain Randomisation:** Improve robustness to mass, friction, and sensor noise variations.
- Advanced Architectures: Graph-based or attention-powered controllers for multi-limb coordination.
- **Energy Efficiency:** Incorporate power/regret into reward for practical deployment.

ADDITIONAL RESOURCES

- Code & Models: https://github.com/yunusdanabas/passive_walker_rl.git
- Contact: yunusdanabas@sabanciuniv.edu