
Passive Walker RL:
From FSM to JAX/Brax
Expert Controllers & Scalable RL

Yunus Emre Danabaş

Mechatronic Engineering
Sabancı University

July 17, 2025

Outline / Agenda

Introduction & Motivation
Methodology
Results & Discussion
Impact & Ethical Issues
Project Management & Timeline
Conclusion & Future Work
Appendix

1 36

Introduction & Motivation

Legged locomotion remains a challenging control problem:
▶ High-dimensional dynamics, contact events, underactuation
▶ Sample-inefficient exploration in standard RL

Expert demonstrations can bootstrap learning and ensure
safety
JAX/Brax offers GPU-accelerated, vectorised simulation for
fast RL
Goal: combine rule-based experts with modern RL for
efficient, robust passive walking

2 36

Problem Statement

Design a control pipeline for a planar passive walker:
▶ Leverage a finite-state expert for stable baseline gait
▶ Learn a differentiable policy via behaviour cloning (BC)
▶ Fine-tune with Proximal Policy Optimization (PPO)

Achieve both sample efficiency and high final performance
Scale up training using a vectorised JAX/Brax
implementation
Systematically explore hyperparameters to identify robust
configurations

3 36

Key Contributions

1. Expert–to–RL Pipeline: FSM → Behaviour Cloning →
BC-seeded PPO for “walk-from-day-one” learning

2. Imitation-Regularised PPO: Clipped surrogate loss
augmented with decaying BC term for stability

3. Vectorised JAX/Brax Pipeline: High-throughput,
GPU-accelerated simulation enabling large-scale
experiments

4. Large-Scale Hyperparameter Sweep: 120-job grid over
reward scaling, learning rate, network capacity

5. Open-Source Release:
github.com/yunusdanabas/passive_walker_rl

4 36

https://github.com/yunusdanabas/passive_walker_rl.git

Physics Model & Simulation Setup

MuJoCo model: 5 bodies, 7
DoFs (planar slide x, z, yaw
hinge, hip hinge, two
prismatic knees)
Virtual ramp: gravity tilted
11.5◦ downhill
Simulation: physics timestep
= 1 ms; control at 200–1 000
Hz

5 36

Joints & Actuators

Joint Type

slide_x prismatic
slide_z prismatic
yaw hinge
hip hinge
left_knee prismatic
right_knee prismatic

Ranges: slide x, z, yaw, hip
unbounded; knees ±0.30 m.

Actuator kp

hip_act 5
left_knee_act 1000
right_knee_act 1000

Control range: hip ±0.5 rad; knees
±0.3 m.

6 36

Expert Finite-State Controller

FSM Logic (Detailed Conditions)

Hip Controller:
▶ Phase: one leg swings, the other supports.
▶ Switch when:

Swing foot contacts ground (zfoot < 0.05 m),
And trunk returns upright (pitch < 0).

▶ Action: desired hip angle toggles between ±0.3 rad.

Knee Controller:
▶ States: Stance (extended) vs. Retraction (bent).
▶ To Retract:

Opposite foot has just landed (zother foot < 0.05 m),
And local thigh upright (pitch < 0).

▶ To Extend:
Swing leg has moved forward past neutral (hip pitch >
threshold).

▶ Positions: retracted = +0.30 m, stance = 0 m.

7 36

FSM Kinematics Summary

(a) Joint Angles & Velocities (b) Torso Pitch & Speed

(c) Foot–Ground Contact (d) Center of Mass Path

Figure: Expert FSM reference trajectories: (top) joint kinematics and
body motion; (bottom) foot contact timing and CoM trajectory.8 36

Behaviour Cloning Pipeline

Variants explored:
▶ Hip–only BC
▶ Knees–only BC
▶ Full BC (hip + both knees) with four loss functions: MSE,

Huber, L1, Combined
Data: ∼ 105 expert steps at ∼ 103 Hz from FSM→
observations (11 dims) expert actions (3 dims)
Model: 2-layer ReLU MLP (256 hidden units)
Training: O(105) samples, ∼102 epochs, batch ∼ 64, α∼10−4

9 36

BC Prediction vs. True FSM Actions

Scatter of BC predictions versus FSM labels shows tight
clustering around y = x for both joints.
Indicates low bias and accurate reproduction of expert
commands across the gait cycle.
Used 100,000 samples and three loss variants (MSE, Huber,
L1, combined).

10 36

BC Loss Variants: Visual Comparison

11 36

BC Loss Variants: Key Insights

Training Loss Convergence:
▶ All four loss functions (MSE, Huber, L1, Combined) converge

over 100 epochs.
▶ Huber and L1 exhibit slightly smoother decay and robustness

to outliers.
Evaluation Reward:
▶ Huber-trained policy achieves the highest total reward when

deployed.
▶ Combined loss performs comparably but with greater

variance.
Action Distribution:
▶ MSE yields tightly concentrated actions around the expert

mean.
▶ Combined loss produces a broader distribution, indicating

exploratory behavior.
Training Efficiency:
▶ MSE and Huber are fastest per epoch.
▶ L1 and Combined incur minor extra cost due to additional

absolute/huber computations.
12 36

PPO Fine-Tuning Strategies

PPO Fine-Tuning Overview

Observation ot Actor πθ Action at Env

Critic Vϕ rt

Actor (πθ): small MLP, one
hidden layer
Critic (Vϕ): two-layer MLP

Rollouts: on-policy data
+ GAE
Updates: PPO clip +
β(t)-regularisation

13 36

PPO Update Algorithm

Require: θ, ϕ, β0
1: for iteration = 1 . . .N do
2: B ← CollectTrajectories(πθ)
3: {Â, R̂} ← GAE(B.rewards, B.dones, Vϕ(B.obs))
4: for epoch = 1 . . .K do
5: for all mini-batch b ⊂ B do
6: Lclip ← PPOClip(b, πold

θ , Â)
7: Lbc ← ∥πθ(b.obs)− b.bc_targets∥2

8: L← Lclip + β(t) Lbc
9: θ ← θ − α∇θL

10: end for
11: end for
12: ϕ ← ϕ− αv∇ϕ∥Vϕ(B.obs)− R̂∥2

13: β(t+ 1)← Decay(β(t))
14: end for

14 36

PPO + BC Loss Functions

Clipped Surrogate Objective

LPPO = −Et
[
min

(
rt Ât, clip(rt, 1− ϵ, 1 + ϵ) Ât

)]
, rt =

πθ(at|ot)
πθold(at|ot)

Total Loss with BC Regularisation

Ltotal = LPPO + β(t)Et
[
∥πθ(ot)− aBC

t ∥2], β(0) = β0, β(N)→ 0.

15 36

Imitation Weight Annealing

Environment Steps

β(t)

Linear decay

β0

0

β(0) = β0 > 0: strong imitation early
β(t) ↓ 0: pure PPO later
Balances stability vs. exploration

16 36

BC-seeded vs Scratch PPO

BC-seeded PPO
Policy initialised from BC
weights
Imitation term β(t) > 0
early
Faster convergence to
walking gait
Smaller batch sizes, fewer
env steps

Scratch PPO
Random policy
initialization
No imitation
regularisation (β(t) ≡ 0)
Requires more exploration
Longer training to reach
stability

17 36

Training Flow Recap

1. Rollouts: collect on-policy trajectories under πθ
2. Advantage Estimation: compute Â, R̂ via GAE
3. Policy Update: clipped PPO + β(t)BC loss
4. Critic Update: regress Vϕ to returns R̂
5. Annealing: linearly decay imitation weight β(t)

Repeat for N iterations

18 36

Vectorised JAX/Brax Pipeline

Pipeline Overview

MuJoCo → Brax: Parse your passive walker XML via
brax.io.mjcf.load_model into a JAX-native System.
Environment Wrapper: BraxPassiveWalker inherits
PipelineEnv, implements reset / step in pure JAX.
PD Control & Reward: τ = Kp(qtarg − q)− Kd q̇, reward = ∆x,
terminates on low torso height or large pitch.
Vectorisation & JIT: Compile once with jax.jit, run vmap
overN envs in parallel.
Train with PPO: Call brax.training.agents.ppo.train
on batched data for maximum throughput.

19 36

BraxPassiveWalker: reset

1 def reset(self, rng):
2 # 1) sample initial noise on joints
3 rng, sub = jax.random.split(rng)
4 noise = (2*jax.random.uniform(sub,(3,))-1)*self.reset_noise
5 q0 = self.sys.init_q.at[self.act_idx].add(noise*self.action_scale)
6 qd0 = jnp.zeros_like(self.sys.init_qd)
7
8 # 2) initialize pipeline state
9 ps = self.pipeline_init(q0, qd0)

10
11 # 3) return Brax State
12 return State(
13 pipeline_state=ps,
14 obs=self._get_obs(ps),
15 reward=0.0,
16 done=0.0,
17 metrics={"prev_x": ps.x.pos[0,0]}
18)

Randomises hip and knees within ±reset_noise
Builds initial Brax pipeline state → position + velocity
Packs into State with obs, reward, done, metrics

20 36

BraxPassiveWalker: step

1 def step(self, state, action):
2 # 1) PD controller
3 act_scaled = jnp.clip(action,-1,1)*self.action_scale
4 q, qd = state.pipeline_state.q[self.act_idx], state.pipeline_state.qd[self.

act_idx]
5 tau = self.kp*(act_scaled - q) - self.kd*qd
6
7 # 2) forward simulation
8 ps_next = self.pipeline_step(state.pipeline_state, tau)
9

10 # 3) reward & done
11 dx = ps_next.x.pos[0,0] - state.metrics["prev_x"]
12 height_ok = ps_next.x.pos[0,2] > 0.5
13 pitch_ok = abs(quat_to_euler(ps_next.x.rot[0])[1]) < 0.8
14 done_flag = jnp.logical_not(height_ok & pitch_ok)
15
16 # 4) pack next state
17 return state.replace(
18 pipeline_state=ps_next,
19 obs=self._get_obs(ps_next),
20 reward=dx,
21 done=done_flag.astype(jnp.float32),
22 metrics={"prev_x": ps_next.x.pos[0,0]}
23)

PD torques: τ = Kp(atarget − q) − Kd q̇
Reward: forward progress ∆x
Termination: torso height < 0.5 m or pitch || 0.8 rad
State replace: updates obs, reward, done, and prev_x

21 36

High-Throughput Training

Massive sweep: 120 PPO jobs × 24M steps each (few hours
on RTX 4060 Ti).
Parallel simulators: 128 envs in lock-step via vmap→ ×100
speed-up vs. loop.
Compile once: JAX JIT fixes the compute graph, reuses across
all envs iterations.
Toolchain: Brax for physics, Flax/Equinox for networks,
Optax for optimizers.
Reproducible logging: msgpack payloads, deterministic
seeds, helper scripts for aggregate plots.

22 36

Experimental Sweep Design

Experimental Sweep Design

Goals:
▶ Find the single best hyper-parameter configuration
▶ Analyse trends over reward scale, learning rate and network

size
Grid: 3 seeds × 2 reward scales × 4 LRs × 5 architectures = 120
jobs
Metrics: final episode reward (mean ± std over seeds),
wall-clock time, stable completions

Dimension Values (count)
Seeds {0,1,2} (3)
Reward scale {0.5,1.0} (2)
Learning rate {1e-3,5e-4,1e-4,1e-5} (4)
Architectures {tiny,small,medium,deep,deepXL} (5)

Total runs 120

Table: Sweep grid dimensions (values in braces).
23 36

Sweep Results: Reward Scale & Learning Rate
Trends

Figure: Mean ± std reward vs.
reward scale

Figure: Mean ± std reward vs.
learning rate

24 36

Key Insights & Best Configuration

Best Hyper-Parameter Configuration
S2 | R = 0.5 | LR = 1e-3 | Arch = medium

Highest mean reward across seeds
Shows that moderate reward scaling and a higher learning
rate perform best
Typical wall-clock: ∼2–10 min per job on RTX 4060 Ti
All 120 jobs completed successfully (no simulator crashes)

Guideline for future experiments: start with
medium+LR=1e-3+scale=0.5.

25 36

Results & Discussion

Behaviour Cloning Performance

BC variants: hip-only & knee-only (context), focus on full BC
(hip + knees)
Losses compared: MSE, Huber, L1, Combined

Figure: Hip: BC vs. FSM labels Figure: Knee: BC vs. FSM labels

26 36

BC Loss Variant Comparison

Figure: Training loss, evaluation reward, action-density and runtime for
each BC objective

27 36

PPO Fine-Tuning Performance

BC-seeded PPO converges in ∼50% of the iterations vs.
scratch PPO
Scratch PPO achieves similar final gait but needs ×2–×3
more samples
Decaying imitation weight β(t) stabilises early training

28 36

Hyperparameter Sweep: Aggregated Trends

Figure: Mean±std reward vs.
reward scale

Figure: Mean±std reward vs.
learning rate

29 36

Discussion & Key Takeaways

Behaviour Cloning: Huber loss offers best trade-off of bias
vs. robustness
Imitation-seeded PPO: drastically cuts sample complexity
and speeds convergence
Sweep guidelines: medium networks, LR=1e-3, scale=0.5 for
strong performance
High-throughput pipeline: vectorised JAX/Brax makes such
large sweeps practical

30 36

Impact & Ethical Issues

Impact

Accelerated Research: “Walk-from-day-one” imitation
jump-starts RL in legged locomotion.
Open-Source Toolkit: JAX/Brax pipeline + scripts for
large-scale sweeps released on GitHub.
Broader Applications: Assistive robotics, search-and-rescue,
exploratory platforms.
Efficiency Gains: Vectorised simulation achieves ×100
speed-up vs. naive loops.

31 36

Ethical Issues

Real-World Safety: Simulator-to-robot gap demands
rigorous hardware safety checks.
Bias in Demonstrations: FSM expert encodes narrow gait
patterns—limits generalisation.
Compute Footprint: 120-job sweep deep training consume
GPU hours—track budgets.
Dual-Use Risks: Legged controllers may be repurposed for
surveillance or military.
Transparency & Reproducibility: Full code, configs, logs
published; encourage peer verification.

32 36

Project Management & Timeline

Project Management

Solo Effort: All design, implementation, experiments by the
author
Learning Curve: JAX/MuJoCo/Brax resources sparse—many
tools mastered from scratch
Challenges: XML→Brax compatibility, PD tuning, large-scale
sweep orchestration
Resources: Initial work on CPU laptop; final deep runs on
RTX 4060 Ti workstation
Deliverables: Well-organized GitHub repo with code, data,
scripts, and documentation

33 36

Timeline

Phase Activities
FSM & Data Col-
lection

Expert FSM design, MuJoCo demos, dataset logging

Behaviour
Cloning

MLP architecture, loss variants, BC training

PPO Fine-
Tuning

BC-seeded & scratch PPO, ablation studies

Brax Port & Hy-
perparameter
Sweep

MJCF→Brax conversion, 120-job PPO grid

Write-up & Re-
lease

Report chapters, presentation, open-source push

34 36

Conclusion & Future Work

Conclusion

Pipeline Success: FSM→BC→PPO→Brax achieved robust
passive walking “from day one.”
Sample Efficiency: Imitation regularisation halved RL
training steps vs. scratch.
Scalability: JAX/Brax vectorisation made 24 M-step sweeps
feasible in hours.
Open Science: All code, models, results publicly available for
community reuse.

35 36

Future Work

Complex Terrain: Extend to uneven ground, stairs, and
variable slopes.
Hardware Validation: Transfer policies to real robot—study
sim-to-real gaps and safety.
Domain Randomisation: Improve robustness to mass,
friction, and sensor noise variations.
Advanced Architectures: Graph-based or attention-powered
controllers for multi-limb coordination.
Energy Efficiency: Incorporate power/regret into reward for
practical deployment.

36 / 36

Additional Resources

Code & Models: https://github.com/yunusdanabas/
passive_walker_rl.git
Contact: yunusdanabas@sabanciuniv.edu

https://github.com/yunusdanabas/passive_walker_rl.git
https://github.com/yunusdanabas/passive_walker_rl.git

	Expert Finite‐State Controller
	PPO Fine-Tuning Strategies
	Vectorised JAX/Brax Pipeline
	Experimental Sweep Design
	Results & Discussion
	Impact & Ethical Issues
	Project Management & Timeline
	Conclusion & Future Work
	Appendix

