PASSIVE WALKER RL:

FROM FSM 1O JAX/BRAX

EXPERT CONTROLLERS & SCALABLE RL

YUNUS EMRE DANABAS

MECHATRONIC ENGINEERING
SABANCI UNIVERSITY

JuLy 17, 2025

.. Sabanc1 .
Universitesi

OUTLINE / AGENDA

Introduction & Motivation
Methodology

Results & Discussion

Impact & Ethical Issues

Project Management & Timeline
Conclusion & Future Work
Appendix

INTRODUCTION & MOTIVATION

m Legged locomotion remains a challenging control problem:
» High-dimensional dynamics, contact events, underactuation
» Sample-inefficient exploration in standard RL
m Expert demonstrations can bootstrap learning and ensure
safety

m JAX/Brax offers GPU-accelerated, vectorised simulation for
fast RL

m Goal: combine rule-based experts with modern RL for
efficient, robust passive walking

PROBLEM STATEMENT

m Design a control pipeline for a planar passive walker:

> Leverage a finite-state expert for stable baseline gait
» Learn a differentiable policy via behaviour cloning (BC)
» Fine-tune with Proximal Policy Optimization (PPO)

m Achieve both sample efficiency and high final performance
m Scale up training using a vectorised JAX/Brax
implementation

m Systematically explore hyperparameters to identify robust
configurations

KEY CONTRIBUTIONS

1. Expert-to-RL Pipeline: FSM - Behaviour Cloning -
BC-seeded PPO for “walk-from-day-one” learning

2. Imitation-Regularised PPO: Clipped surrogate loss
augmented with decaying BC term for stability

3. Vectorised JAX/Brax Pipeline: High-throughput,
GPU-accelerated simulation enabling large-scale
experiments

4. Large-Scale Hyperparameter Sweep: 120-job grid over
reward scaling, learning rate, network capacity

5. Open-Source Release:
github.com/yunusdanabas/passive_walker_rl

https://github.com/yunusdanabas/passive_walker_rl.git

PHYSICS MODEL & SIMULATION SETUP

m MujoCo model: 5 bodies, 7
DoFs (planar slide x, z, yaw
hinge, hip hinge, two
prismatic knees)

m Virtual ramp: gravity tilted
11.5° downhill

m Simulation: physics timestep
=1 ms; control at 200-1 000
Hz

JOINTS & ACTUATORS

Joint Type
slide_x prismatic
slide_z prismatic
yaw hinge
hip hinge

left_knee prismatic
right_knee prismatic

Ranges: slide x, z, yaw, hip

unbounded; knees +0.30 m.

Actuator kp

hip_act 5
left_knee_act 1000
right_knee_act 1000

Control range: hip +0.5rad; knees
+0.3m.

EXPERT FINITE-STATE CONTROLLER

FSM LoGIC (DETAILED CONDITIONS)

m Hip Controller:

» Phase: one leg swings, the other supports.
» Switch when:

m Swing foot contacts ground (zf,0; < 0.05m),
B And trunk returns upright (pitch < o).

» Action: desired hip angle toggles between +0.3rad.

m Knee Controller:

» States: Stance (extended) vs. Retraction (bent).
» To Retract:

B Opposite foot has just landed (Zyther foot < 0.05m),
m And local thigh upright (pitch < 0).
» To Extend:

B Swing leg has moved forward past neutral (hip pitch >
threshold).

» Positions: retracted = +0.301m, stance = om.

FSM KINEMATICS SUMMARY

T

TMJ Aw i/ Mx M/‘ LMM uk,w ’A u M

(a) Joint Angles & Velocities (b) Torso Pitch & Speed

AR A A AR

MMJW MWJW\M‘

(c) Foot-Ground Contact (d) Center of Mass Path

Figure: Expert FSM reference trajectories: (top) joint kinematics and
hottom) foot contact timing and CoM trajectory.

BEHAVIOUR CLONING PIPELINE

m Variants explored:
» Hip-only BC
» Knees-only BC
» Full BC (hip + both knees) with four loss functions: MSE,
Huber, L1, Combined
m Data: ~ 10° expert steps at ~ 103 Hz from FSM —
observations (11 dims) expert actions (3 dims)

m Model: 2-layer ReLU MLP (256 hidden units)
m Training: O(10°) samples, ~10? epochs, batch ~ 64, a~107*

BC PREDICTION VS. TRUE FSM ACTIONS

BC Prediction vs. True FSM Action BC Prediction vs. True FSM Action
0.6 o 0.05
0.4 ‘/" 0.00
e 0.2 ,4,/ —0.05
£ g i s H
g : P T -0.10 -
0.0 - . ® L
3 ' b ! I
k=1 . e £-o1s e H
B 02 ' 1 :
Ve & :
N o -0.20 L
0.4 e e
e —0.25 e
-0.6 1 e o
-~ H —0.304
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
True action True action

m Scatter of BC predictions versus FSM labels shows tight
clustering around y = x for both joints.

m Indicates low bias and accurate reproduction of expert
commands across the gait cycle.

m Used 100,000 samples and three loss variants (MSE, Huber,
L1, combined).

BC LOSS VARIANTS: VISUAL COMPARISON

Training Loss Comparison Evaluation Reward Comparison
4000
ons — 3827.03
HUBER 1500
L
0.12 | COMBINED
3000 2988.04
|
I © 2500
s 2252.58
f H 2096.29
| & 2000
M 2 1500
) ' AN x 1000
X A
\ A A A 500
SAATAARN AT
0.00
0
0 20 40 60 80 100 mse huber n combined
Epoch Method
Action Distribution Comparison Training Time Comparison
500 291.7s
M 469.75 473.25 KLEES
35 —— HUBER
L
30 Noa COMBINED 400
|
| -
25 tV cl
. B
220 =
2 <€
e €
15 ® 200
£
1.0
100
05
AN
0.0 0
-1.0 =05 0.0 0.5 1.0 mse huber n combined
Action Value Method

BC LOSS VARIANTS: KEY INSIGHTS

m Training Loss Convergence:
» All four loss functions (MSE, Huber, L1, Combined) converge
over 100 epochs.
» Huber and L1 exhibit slightly smoother decay and robustness
to outliers.
m Evaluation Reward:
» Huber-trained policy achieves the highest total reward when
deployed.
» Combined loss performs comparably but with greater
variance.
m Action Distribution:
» MSE yields tightly concentrated actions around the expert
mean.
» Combined loss produces a broader distribution, indicating
exploratory behavior.
m Training Efficiency:
» MSE and Huber are fastest per epoch.
» L1and Combined incur minor extra cost due to additional

iiiiiiii‘ i!ier computations.

PPO FINE-TUNING STRATEGIES

PPO FINE-TUNING OVERVIEW

[Observation o} ———{Acorzo} | Acton ai} /&

Critic Vy |« re
m Actor (7y): small MLP, one m Rollouts: on-policy data
hidden layer + GAE
m Critic (V,): two-layer MLP m Updates: PPO clip +

B(t)-regularisation

PPO UPDATE ALGORITHM

Require: 0, ¢, S,
1: for iteration =1...N do
2: B < COLLECTTRAJECTORIES(7p)

3: {A,R} «+ GAE(B.rewards, B.dones, Vy(B.obs))
4 for epoch =1...K do

5 for all mini-batch b ¢ B do

6: Laiip < PPOCLIP(b, 799, A)

i Lpe < ||mg(b.obs) — b.bc_targets||?
8: L« Lclip aF B(t) Ly

o: 0 «— 60— aVyl

10: end for

1: end for

12 ¢ ¢ — ayVy|Vs(B.obs) — R|?
13: B(t+ 1) < Decay(5(t))
14: end for

PPO + BC LOSS FUNCTIONS
Clipped Surrogate Objective

mo(at|0t)

L :_E[' reAy, clip(re,1— €, 1 2‘}’ "t o (@ior)
PPO tmm(t t, clip(re &1+e¢) t) ‘ 0014 (0t|Ot)

Total Loss with BC Regularisation

Liotal = Lppo + B(t) Et[[|ma(0t) — ar®|P], B(0) = Bo, B(N) — 0.

IMITATION WEIGHT ANNEALING

A(t)
Bo !

Lin€ax decay

Y Environment Steps
m 3(0) = 3o > O: strong imitation early

m 5(t) | o: pure PPO later
m Balances stability vs. exploration

BC-SEEDED VS SCRATCH PPO

BC-seeded PPO
m Policy initialised from BC
weights
m Imitation term j3(t) > o
early

m Faster convergence to
walking gait

m Smaller batch sizes, fewer
env steps

Scratch PPO

Random policy
initialization

No imitation
regularisation (3(t) = o)
Requires more exploration

Longer training to reach
stability

TRAINING FLOW RECAP

1. Rollouts: collect on-policy trajectories under my
2. Advantage Estimation: compute A, R via GAE

3. Policy Update: clipped PPO + 3(t) BC loss

4. Critic Update: regress V, to returns R

5. Annealing: linearly decay imitation weight 5(t)

Repeat for N iterations

VECTORISED]AXIBRAX PIPELINE

PIPELINE OVERVIEW

m MujoCo - Brax: Parse your passive walker XML via
brax.1io.mjcf.load_model into a JAX-native System.

m Environment Wrapper: BraxPassiveWalker inherits
PipelineEnv, implements reset / step in pure JAX.

m PD Control & Reward: 7 = K, (qGtare — q) — Ky G, reward = Ax,
terminates on low torso height or large pitch.

m Vectorisation & JIT: Compile once with jax.jit, run vmap
overN envs in parallel.

m Train with PPO: Call brax.training.agents.ppo.train
on batched data for maximum throughput.

BRAXPASSIVEWALKER: reset

1 | def reset(self, rng):

2 # 1) sample initial noise on joints

3 rng, sub = jax.random.split(rng)

4 noise = (2*jax.random.uniform(sub,(3,))-1)+self.reset_noise
5 qo = self.sys.init_g.at[self.act_idx].add(noisexself.action_scale)
6 qde = jnp.zeros_like(self.sys.init_qd)

7

8 # 2) initialize pipeline state

9 ps = self.pipeline_init(qge, qdo)
10

1 # 3) return Brax State

12 return State(

13 pipeline_state=ps,

1% obs=self._get_obs(ps),

15 reward=0.0,

16 done=0.0,

17 metrics={"prev_x": ps.x.pos[e,0]}
18)

® Randomises hip and knees within treset_noise
m Builds initial Brax pipeline state — position + velocity
m Packs into State with obs, reward, done, metrics

BRAXPASSIVEWALKER: step

1 | def step(self, state, action):

2 # 1) PD controller

3 act_scaled = jnp.clip(action,-1,1)*self.action_scale

4 q, qd = state.pipeline_state.q[self.act_idx], state.pipeline_state.qd[self.

act_idx]

5 tau = self.kp*(act_scaled - q) - self.kdxqd

6

7 # 2) forward simulation

8 ps_next = self.pipeline_step(state.pipeline_state, tau)
9

10 # 3) reward & done

1 dx = ps_next.x.pos[e,0] - state.metrics["prev_x"]

12 height_ok = ps_next.x.pos[e,2] > e.5

13 pitch_ok = abs(quat_to_euler(ps_next.x.rot[e])[1]) < 0.8
1% done_flag = jnp.logical_not(height_ok & pitch_ok)

15

16 # 4) pack next state

17 return state.replace(

18 pipeline_state=ps_next,

19 obs=self._get_obs(ps_next),
20 reward=dx,

21 done=done_flag.astype(jnp.float32),

22 metrics={"prev_x": ps_next.x.pos[e,0]}

23)

PD torques: 7 = Kp(Atarget — q) — Kg g

Reward: forward progress Ax

Termination: torso height < 0.5 m or pitch || 0.8 rad
State replace: updates obs, reward, done, and prev_x

HIGH-THROUGHPUT TRAINING

m Massive sweep: 120 PPO jobs x 24M steps each (few hours
on RTX 4060 Ti).

m Parallel simulators: 128 envs in lock-step via vmap = x100
speed-up vs. loop.

m Compile once: JAX JIT fixes the compute graph, reuses across
all envs iterations.

m Toolchain: Brax for physics, Flax/Equinox for networks,
Optax for optimizers.

m Reproducible logging: msgpack payloads, deterministic
seeds, helper scripts for aggregate plots.

EXPERIMENTAL SWEEP DESIGN

EXPERIMENTAL SWEEP DESIGN

m Goals:

» Find the single best hyper-parameter configuration
» Analyse trends over reward scale, learning rate and network

size

m Grid: 3 seeds x 2 reward scales x 4 LRs x 5 architectures = 120

jobs

m Metrics: final episode reward (mean + std over seeds),
wall-clock time, stable completions

Dimension Values (count)
Seeds {01,2} (3)
Reward scale {0.51.0} (2)

Learning rate
Architectures

{1e-3,5e-4,1e-4,1e-5} (4)
{tiny,small,medium,deep,deepXL} (5)

Total runs

120

Table: Sweep grid dimensions (values in braces).

SWEEP RESULTS: REWARD SCALE & LEARNING RATE

TRENDS

PassiveWalker - PPO sweep PassiveWalker - PPO sweep
0151 = mean_reward 020
T o1 015
% 5 0104 Ir
I =
Pomm = o
£ -0.05 —00%
-0.10
-0.10
P -o1s
=3 =] [=} =] = = = = 0.5 1.0
reward_scale reward_scale
Figure: Mean * std reward vs. Figure: Mean * std reward vs.
reward scale learning rate

KEY INSIGHTS & BEST CONFIGURATION

Best Hyper-Parameter Configuration

S2|R=0.5| LR =1e-3 | Arch =medium

m Highest mean reward across seeds

m Shows that moderate reward scaling and a higher learning
rate perform best

m Typical wall-clock: ~2—10 min per job on RTX 4060 Ti
m All 120 jobs completed successfully (no simulator crashes)

Guideline for future experiments: start with
medium+LR=1e-3+scale=0.5.

RESULTS & DISCUSSION

BEHAVIOUR CLONING PERFORMANCE

m BC variants: hip-only & knee-only (context), focus on full BC

(hip + knees)

m Losses compared: MSE, Huber, L1, Combined

BC Prediction vs. True FSM Action

06 ya
04 e
02 e
c . g
<] L i]
g . g
= 0.0 . . ©
g : :)
2 £
g -0.2 ' @
4 o &
[e
0.4
0.6 e
0.6 -04 02 00 02 04 06

True action

Figure: Hip: BC vs. FSM labels

-0.05

-0.10

-0.15

-0.20

-0.25

BC Prediction vs. True FSM Action

0301 7

-0.30

-025 -020 -0.15 -010 -0.05 000 0.05
True action

Figure: Knee: BC vs. FSM labels

BC LOSS VARIANT COMPARISON

Training Loss Comparison Evaluation Reward Comparison
4000 3827.03
— MsE
0.14
HUBER 3500
u
0.12 — COMBINED
3000 2988.04
0.10
o o 2500
8 5 2252.58
2008 z 2096.29
g & 2000
£ =
 0.06 A £
= | # 1500
0.04 A
A 1000
002 | A
A N 500
0.00 = =t —
0
0 20 0 60 80 100 mse huber n combined
Epoch Method
Action Distribution Comparison Training Time Comparison
491.75
A — MsE 500 473325 485.55
as \ HUBER
v -
30 f o | — COMBINED 400
25)
2 2 300
220 [
8 £
15 5 200
£
10
100
0s
00 0
-10 05 0.0 05 10 huber n combined
Action Value Method

Figure: Training loss, evaluation reward, action-density and runtime for
each BC objective

PPO FINE-TUNING PERFORMANCE

m BC-seeded PPO converges in ~50% of the iterations vs.
scratch PPO

m Scratch PPO achieves similar final gait but needs x2-x3
more samples

m Decaying imitation weight §(t) stabilises early training

HYPERPARAMETER SWEEP: AGGREGATED TRENDS

PassiveWalker - PPO sweep PassiveWalker - PPO sweep
B mean_reward
015 020
015
T o0l
H o 0104 Ir
3 0054 I g - e 05
8 g oos = 0.0001
E 000 | | . E 000+ : ngZ‘js
= 005 -0.05
h 0 Ll Ll n o o o =l —015
£ el <] A A A A 0.5 10
reward_scale reward_scale
Figure: Meansstd reward vs. Figure: Meansstd reward vs.
reward scale learning rate

DISCUSSION & KEY TAKEAWAYS

m Behaviour Cloning: Huber loss offers best trade-off of bias
vs. robustness

m Imitation-seeded PPO: drastically cuts sample complexity
and speeds convergence

m Sweep guidelines: medium networks, LR=1e-3, scale=0.5 for
strong performance

m High-throughput pipeline: vectorised JAX/Brax makes such
large sweeps practical

IMPACT & ETHICAL ISSUES

IMPACT

m Accelerated Research: “Walk-from-day-one” imitation
jump-starts RL in legged locomotion.

m Open-Source Toolkit: JAX/Brax pipeline + scripts for
large-scale sweeps released on GitHub.

m Broader Applications: Assistive robotics, search-and-rescue,
exploratory platforms.

m Efficiency Gains: Vectorised simulation achieves x100
speed-up vs. naive loops.

ETHICAL ISSUES

m Real-World Safety: Simulator-to-robot gap demands
rigorous hardware safety checks.

m Bias in Demonstrations: FSM expert encodes narrow gait
patterns—limits generalisation.

m Compute Footprint: 120-job sweep deep training consume
GPU hours—track budgets.

m Dual-Use Risks: Legged controllers may be repurposed for
surveillance or military.

m Transparency & Reproducibility: Full code, configs, logs
published; encourage peer verification.

PROJECT MANAGEMENT & TIMELINE

PROJECT MANAGEMENT

m Solo Effort: All design, implementation, experiments by the
author

m Learning Curve: JAX/Mu)JoCo/Brax resources sparse—many
tools mastered from scratch

m Challenges: XML-Brax compatibility, PD tuning, large-scale
sweep orchestration

m Resources: Initial work on CPU laptop; final deep runs on
RTX 4060 Ti workstation

m Deliverables: Well-organized GitHub repo with code, data,
scripts, and documentation

TIMELINE

Phase Activities

FSM & Data Col- Expert FSM design, MujoCo demos, dataset logging
lection

Behaviour MLP architecture, loss variants, BC training
Cloning

PPO Fine- BC-seeded & scratch PPO, ablation studies
Tuning

Brax Port & Hy- MJCF-Brax conversion, 120-job PPO grid
perparameter

Sweep

Write-up & Re- Report chapters, presentation, open-source push
lease

CONCLUSION & FUTURE WORK

CONCLUSION

m Pipeline Success: FSM->BC-PPO->Brax achieved robust
passive walking “from day one.”

m Sample Efficiency: Imitation regularisation halved RL
training steps vs. scratch.

m Scalability: JAX/Brax vectorisation made 24 M-step sweeps
feasible in hours.

m Open Science: All code, models, results publicly available for
community reuse.

FUTURE WORK

m Complex Terrain: Extend to uneven ground, stairs, and
variable slopes.

m Hardware Validation: Transfer policies to real robot—study
sim-to-real gaps and safety.

m Domain Randomisation: Improve robustness to mass,
friction, and sensor noise variations.

m Advanced Architectures: Graph-based or attention-powered
controllers for multi-limb coordination.

m Energy Efficiency: Incorporate power/regret into reward for
practical deployment.

36 / 36

ADDITIONAL RESOURCES

m Code & Models: https://github.com/yunusdanabas/
passive_walker_rl.git

m Contact: yunusdanabas@sabanciuniv.edu

https://github.com/yunusdanabas/passive_walker_rl.git
https://github.com/yunusdanabas/passive_walker_rl.git

	Expert Finite‐State Controller
	PPO Fine-Tuning Strategies
	Vectorised JAX/Brax Pipeline
	Experimental Sweep Design
	Results & Discussion
	Impact & Ethical Issues
	Project Management & Timeline
	Conclusion & Future Work
	Appendix

