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Introduction & Motivation

Legged locomotion remains a challenging control problem:
▶ High-dimensional dynamics, contact events, underactuation
▶ Sample-inefficient exploration in standard RL

Expert demonstrations can bootstrap learning and ensure
safety
JAX/Brax offers GPU-accelerated, vectorised simulation for
fast RL
Goal: combine rule-based experts with modern RL for
efficient, robust passive walking
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Problem Statement

Design a control pipeline for a planar passive walker:
▶ Leverage a finite-state expert for stable baseline gait
▶ Learn a differentiable policy via behaviour cloning (BC)
▶ Fine-tune with Proximal Policy Optimization (PPO)

Achieve both sample efficiency and high final performance
Scale up training using a vectorised JAX/Brax
implementation
Systematically explore hyperparameters to identify robust
configurations
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Key Contributions

1. Expert–to–RL Pipeline: FSM → Behaviour Cloning →
BC-seeded PPO for “walk-from-day-one” learning

2. Imitation-Regularised PPO: Clipped surrogate loss
augmented with decaying BC term for stability

3. Vectorised JAX/Brax Pipeline: High-throughput,
GPU-accelerated simulation enabling large-scale
experiments

4. Large-Scale Hyperparameter Sweep: 120-job grid over
reward scaling, learning rate, network capacity

5. Open-Source Release:
github.com/yunusdanabas/passive_walker_rl
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Physics Model & Simulation Setup

MuJoCo model: 5 bodies, 7
DoFs (planar slide x, z, yaw
hinge, hip hinge, two
prismatic knees)
Virtual ramp: gravity tilted
11.5◦ downhill
Simulation: physics timestep
= 1 ms; control at 200–1 000
Hz
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Joints & Actuators

Joint Type

slide_x prismatic
slide_z prismatic
yaw hinge
hip hinge
left_knee prismatic
right_knee prismatic

Ranges: slide x, z, yaw, hip
unbounded; knees ±0.30 m.

Actuator kp

hip_act 5
left_knee_act 1000
right_knee_act 1000

Control range: hip ±0.5 rad; knees
±0.3 m.
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Expert Finite-State Controller



FSM Logic (Detailed Conditions)

Hip Controller:
▶ Phase: one leg swings, the other supports.
▶ Switch when:

Swing foot contacts ground (zfoot < 0.05 m),
And trunk returns upright (pitch < 0).

▶ Action: desired hip angle toggles between ±0.3 rad.

Knee Controller:
▶ States: Stance (extended) vs. Retraction (bent).
▶ To Retract:

Opposite foot has just landed (zother foot < 0.05 m),
And local thigh upright (pitch < 0).

▶ To Extend:
Swing leg has moved forward past neutral (hip pitch >
threshold).

▶ Positions: retracted = +0.30 m, stance = 0 m.
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FSM Kinematics Summary

(a) Joint Angles & Velocities (b) Torso Pitch & Speed

(c) Foot–Ground Contact (d) Center of Mass Path

Figure: Expert FSM reference trajectories: (top) joint kinematics and
body motion; (bottom) foot contact timing and CoM trajectory.8 36



Behaviour Cloning Pipeline

Variants explored:
▶ Hip–only BC
▶ Knees–only BC
▶ Full BC (hip + both knees) with four loss functions: MSE,

Huber, L1, Combined
Data: ∼ 105 expert steps at ∼ 103 Hz from FSM→
observations (11 dims) expert actions (3 dims)
Model: 2-layer ReLU MLP (256 hidden units)
Training: O(105) samples, ∼102 epochs, batch ∼ 64, α∼10−4
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BC Prediction vs. True FSM Actions

Scatter of BC predictions versus FSM labels shows tight
clustering around y = x for both joints.
Indicates low bias and accurate reproduction of expert
commands across the gait cycle.
Used 100,000 samples and three loss variants (MSE, Huber,
L1, combined).
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BC Loss Variants: Visual Comparison
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BC Loss Variants: Key Insights

Training Loss Convergence:
▶ All four loss functions (MSE, Huber, L1, Combined) converge

over 100 epochs.
▶ Huber and L1 exhibit slightly smoother decay and robustness

to outliers.
Evaluation Reward:
▶ Huber-trained policy achieves the highest total reward when

deployed.
▶ Combined loss performs comparably but with greater

variance.
Action Distribution:
▶ MSE yields tightly concentrated actions around the expert

mean.
▶ Combined loss produces a broader distribution, indicating

exploratory behavior.
Training Efficiency:
▶ MSE and Huber are fastest per epoch.
▶ L1 and Combined incur minor extra cost due to additional

absolute/huber computations.
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PPO Fine-Tuning Strategies



PPO Fine-Tuning Overview

Observation ot Actor πθ Action at Env

Critic Vϕ rt

Actor (πθ): small MLP, one
hidden layer
Critic (Vϕ): two-layer MLP

Rollouts: on-policy data
+ GAE
Updates: PPO clip +
β(t)-regularisation
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PPO Update Algorithm

Require: θ, ϕ, β0
1: for iteration = 1 . . .N do
2: B ← CollectTrajectories(πθ)
3: {Â, R̂} ← GAE(B.rewards, B.dones, Vϕ(B.obs))
4: for epoch = 1 . . .K do
5: for all mini-batch b ⊂ B do
6: Lclip ← PPOClip(b, πold

θ , Â)
7: Lbc ← ∥πθ(b.obs)− b.bc_targets∥2

8: L← Lclip + β(t) Lbc
9: θ ← θ − α∇θL

10: end for
11: end for
12: ϕ ← ϕ− αv∇ϕ∥Vϕ(B.obs)− R̂∥2

13: β(t+ 1)← Decay(β(t))
14: end for
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PPO + BC Loss Functions

Clipped Surrogate Objective

LPPO = −Et
[
min

(
rt Ât, clip(rt, 1− ϵ, 1 + ϵ) Ât

)]
, rt =

πθ(at|ot)
πθold(at|ot)

Total Loss with BC Regularisation

Ltotal = LPPO + β(t)Et
[
∥πθ(ot)− aBC

t ∥2], β(0) = β0, β(N)→ 0.
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Imitation Weight Annealing

Environment Steps

β(t)

Linear decay

β0

0

β(0) = β0 > 0: strong imitation early
β(t) ↓ 0: pure PPO later
Balances stability vs. exploration
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BC-seeded vs Scratch PPO

BC-seeded PPO
Policy initialised from BC
weights
Imitation term β(t) > 0
early
Faster convergence to
walking gait
Smaller batch sizes, fewer
env steps

Scratch PPO
Random policy
initialization
No imitation
regularisation (β(t) ≡ 0)
Requires more exploration
Longer training to reach
stability
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Training Flow Recap

1. Rollouts: collect on-policy trajectories under πθ
2. Advantage Estimation: compute Â, R̂ via GAE
3. Policy Update: clipped PPO + β(t)BC loss
4. Critic Update: regress Vϕ to returns R̂
5. Annealing: linearly decay imitation weight β(t)

Repeat for N iterations
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Vectorised JAX/Brax Pipeline



Pipeline Overview

MuJoCo → Brax: Parse your passive walker XML via
brax.io.mjcf.load_model into a JAX-native System.
Environment Wrapper: BraxPassiveWalker inherits
PipelineEnv, implements reset / step in pure JAX.
PD Control & Reward: τ = Kp(qtarg − q)− Kd q̇, reward = ∆x,
terminates on low torso height or large pitch.
Vectorisation & JIT: Compile once with jax.jit, run vmap
overN envs in parallel.
Train with PPO: Call brax.training.agents.ppo.train
on batched data for maximum throughput.
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BraxPassiveWalker: reset

1 def reset(self, rng):
2 # 1) sample initial noise on joints
3 rng, sub = jax.random.split(rng)
4 noise = (2*jax.random.uniform(sub,(3,))-1)*self.reset_noise
5 q0 = self.sys.init_q.at[self.act_idx].add(noise*self.action_scale)
6 qd0 = jnp.zeros_like(self.sys.init_qd)
7
8 # 2) initialize pipeline state
9 ps = self.pipeline_init(q0, qd0)

10
11 # 3) return Brax State
12 return State(
13 pipeline_state=ps,
14 obs=self._get_obs(ps),
15 reward=0.0,
16 done=0.0,
17 metrics={"prev_x": ps.x.pos[0,0]}
18 )

Randomises hip and knees within ±reset_noise
Builds initial Brax pipeline state → position + velocity
Packs into State with obs, reward, done, metrics
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BraxPassiveWalker: step

1 def step(self, state, action):
2 # 1) PD controller
3 act_scaled = jnp.clip(action,-1,1)*self.action_scale
4 q, qd = state.pipeline_state.q[self.act_idx], state.pipeline_state.qd[self.

act_idx]
5 tau = self.kp*(act_scaled - q) - self.kd*qd
6
7 # 2) forward simulation
8 ps_next = self.pipeline_step(state.pipeline_state, tau)
9

10 # 3) reward & done
11 dx = ps_next.x.pos[0,0] - state.metrics["prev_x"]
12 height_ok = ps_next.x.pos[0,2] > 0.5
13 pitch_ok = abs(quat_to_euler(ps_next.x.rot[0])[1]) < 0.8
14 done_flag = jnp.logical_not(height_ok & pitch_ok)
15
16 # 4) pack next state
17 return state.replace(
18 pipeline_state=ps_next,
19 obs=self._get_obs(ps_next),
20 reward=dx,
21 done=done_flag.astype(jnp.float32),
22 metrics={"prev_x": ps_next.x.pos[0,0]}
23 )

PD torques: τ = Kp(atarget − q) − Kd q̇
Reward: forward progress ∆x
Termination: torso height < 0.5 m or pitch || 0.8 rad
State replace: updates obs, reward, done, and prev_x
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High-Throughput Training

Massive sweep: 120 PPO jobs × 24M steps each ( few hours
on RTX 4060 Ti).
Parallel simulators: 128 envs in lock-step via vmap→ ×100
speed-up vs. loop.
Compile once: JAX JIT fixes the compute graph, reuses across
all envs iterations.
Toolchain: Brax for physics, Flax/Equinox for networks,
Optax for optimizers.
Reproducible logging: msgpack payloads, deterministic
seeds, helper scripts for aggregate plots.
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Experimental Sweep Design



Experimental Sweep Design

Goals:
▶ Find the single best hyper-parameter configuration
▶ Analyse trends over reward scale, learning rate and network

size
Grid: 3 seeds × 2 reward scales × 4 LRs × 5 architectures = 120
jobs
Metrics: final episode reward (mean ± std over seeds),
wall-clock time, stable completions

Dimension Values (count)
Seeds {0,1,2} (3)
Reward scale {0.5,1.0} (2)
Learning rate {1e-3,5e-4,1e-4,1e-5} (4)
Architectures {tiny,small,medium,deep,deepXL} (5)

Total runs 120

Table: Sweep grid dimensions (values in braces).
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Sweep Results: Reward Scale & Learning Rate
Trends

Figure: Mean ± std reward vs.
reward scale

Figure: Mean ± std reward vs.
learning rate
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Key Insights & Best Configuration

Best Hyper-Parameter Configuration
S2 | R = 0.5 | LR = 1e-3 | Arch = medium

Highest mean reward across seeds
Shows that moderate reward scaling and a higher learning
rate perform best
Typical wall-clock: ∼2–10 min per job on RTX 4060 Ti
All 120 jobs completed successfully (no simulator crashes)

Guideline for future experiments: start with
medium+LR=1e-3+scale=0.5.
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Results & Discussion



Behaviour Cloning Performance

BC variants: hip-only & knee-only (context), focus on full BC
(hip + knees)
Losses compared: MSE, Huber, L1, Combined

Figure: Hip: BC vs. FSM labels Figure: Knee: BC vs. FSM labels
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BC Loss Variant Comparison

Figure: Training loss, evaluation reward, action-density and runtime for
each BC objective
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PPO Fine-Tuning Performance

BC-seeded PPO converges in ∼50% of the iterations vs.
scratch PPO
Scratch PPO achieves similar final gait but needs ×2–×3
more samples
Decaying imitation weight β(t) stabilises early training
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Hyperparameter Sweep: Aggregated Trends

Figure: Mean±std reward vs.
reward scale

Figure: Mean±std reward vs.
learning rate
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Discussion & Key Takeaways

Behaviour Cloning: Huber loss offers best trade-off of bias
vs. robustness
Imitation-seeded PPO: drastically cuts sample complexity
and speeds convergence
Sweep guidelines: medium networks, LR=1e-3, scale=0.5 for
strong performance
High-throughput pipeline: vectorised JAX/Brax makes such
large sweeps practical
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Impact & Ethical Issues



Impact

Accelerated Research: “Walk-from-day-one” imitation
jump-starts RL in legged locomotion.
Open-Source Toolkit: JAX/Brax pipeline + scripts for
large-scale sweeps released on GitHub.
Broader Applications: Assistive robotics, search-and-rescue,
exploratory platforms.
Efficiency Gains: Vectorised simulation achieves ×100
speed-up vs. naive loops.
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Ethical Issues

Real-World Safety: Simulator-to-robot gap demands
rigorous hardware safety checks.
Bias in Demonstrations: FSM expert encodes narrow gait
patterns—limits generalisation.
Compute Footprint: 120-job sweep deep training consume
GPU hours—track budgets.
Dual-Use Risks: Legged controllers may be repurposed for
surveillance or military.
Transparency & Reproducibility: Full code, configs, logs
published; encourage peer verification.
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Project Management & Timeline



Project Management

Solo Effort: All design, implementation, experiments by the
author
Learning Curve: JAX/MuJoCo/Brax resources sparse—many
tools mastered from scratch
Challenges: XML→Brax compatibility, PD tuning, large-scale
sweep orchestration
Resources: Initial work on CPU laptop; final deep runs on
RTX 4060 Ti workstation
Deliverables: Well-organized GitHub repo with code, data,
scripts, and documentation
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Timeline

Phase Activities
FSM & Data Col-
lection

Expert FSM design, MuJoCo demos, dataset logging

Behaviour
Cloning

MLP architecture, loss variants, BC training

PPO Fine-
Tuning

BC-seeded & scratch PPO, ablation studies

Brax Port & Hy-
perparameter
Sweep

MJCF→Brax conversion, 120-job PPO grid

Write-up & Re-
lease

Report chapters, presentation, open-source push
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Conclusion & Future Work



Conclusion

Pipeline Success: FSM→BC→PPO→Brax achieved robust
passive walking “from day one.”
Sample Efficiency: Imitation regularisation halved RL
training steps vs. scratch.
Scalability: JAX/Brax vectorisation made 24 M-step sweeps
feasible in hours.
Open Science: All code, models, results publicly available for
community reuse.
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Future Work

Complex Terrain: Extend to uneven ground, stairs, and
variable slopes.
Hardware Validation: Transfer policies to real robot—study
sim-to-real gaps and safety.
Domain Randomisation: Improve robustness to mass,
friction, and sensor noise variations.
Advanced Architectures: Graph-based or attention-powered
controllers for multi-limb coordination.
Energy Efficiency: Incorporate power/regret into reward for
practical deployment.
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Additional Resources

Code & Models: https://github.com/yunusdanabas/
passive_walker_rl.git
Contact: yunusdanabas@sabanciuniv.edu

https://github.com/yunusdanabas/passive_walker_rl.git
https://github.com/yunusdanabas/passive_walker_rl.git

	Expert Finite‐State Controller
	PPO Fine-Tuning Strategies
	Vectorised JAX/Brax Pipeline
	Experimental Sweep Design
	Results & Discussion
	Impact & Ethical Issues
	Project Management & Timeline
	Conclusion & Future Work
	Appendix

