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Executive Summary

Achieving stable bipedal walking in simulation demands both robust control priors and efficient reinforcement-
learning (RL) pipelines. This work presents an end-to-end methodology that combines a hand-crafted
finite-state expert, behaviour cloning (BC), Proximal Policy Optimization (PPO), and a scalable JAX/Brax
sweep. Our main contributions and insights are:

1. Finite-State Expert Demonstrations.

• A simple state machine triggers hip and knee setpoints based on foot-contact and torso pitch.

• Generates O(105) high–fidelity state–action pairs at ∼ 1000Hz, covering both stable gaits and
failure modes.

2. Behaviour Cloning Warm Start.

• Trains a lightweight MLP (256 hidden units) to replicate expert joint targets from 11-dimensional
observations.

• Four loss functions (MSE, Huber, L1, combined) yield near-perfect imitation “in one shot,”
providing a reliable walking policy.

3. PPO Fine-Tuning: Seeded vs. Scratch.

• BC-Seeded PPO: Initializes actor from BC weights and adds a linearly decaying imitation term,

L = LPPO + β(t)
∥∥πθ(o)− aBC

∥∥2, β(t)→0.

• Scratch PPO: Identical PPO loop from random initialization as an ablation.

• Seeded PPO achieves stable walking in∼105 steps, whereas scratch typically requires×5 more.

4. Vectorised JAX/Brax Pipeline.

• Converts MuJoCo XML to Brax System, preserving dynamics and actuators.

• Implements a custom BraxPassiveWalker for pure JAX rollouts under PD control.

• Enables a 120-job PPO sweep in minutes on a single GPU, versus days in MuJoCo.

5. Hyperparameter Sweep Key Trends.

• Grid: 3 seeds×2 reward scales×4 learning rates×5 network sizes.

• Best average return achieved with a “medium” network (1 M params), reward scale = 0.5, and
learning rate = 5×10.

• Shallow or overly deep architectures underperform; moderate capacity strikes the best trade-off.

6. Practical Guidelines.

• Warm-start RL via BC accelerates convergence and reduces sample complexity.

• Moderate reward scaling (1.0) stabilizes early training.

• Network size around 10–10 parameters balances expressivity and training speed.

• Leverage JAX/Brax for rapid iteration and automated sweeping.

7. Reproducibility and Code Release.

• All code, models, and data are available at https://github.com/yunusdanabas/passive_

walker_rl.git.

• Detailed scripts cover FSM, BC, PPO (seeded and scratch), Brax conversion, and hyperparameter
aggregation.

This integrated FSM→BC→PPO→Brax framework demonstrates that simple expert priors, when
combined with vectorised RL, yield robust, sample-efficient walking controllers and clear design rules for
future legged locomotion research.
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1 Problem Statement

Bipedal locomotion—especially in passive dynamic walkers, whose natural dynamics allow downhill walk-
ing with minimal actuation—remains an exacting benchmark for robotics and reinforcement learning
(RL). Purely hand-crafted controllers can achieve elegant limit-cycle gaits but struggle to generalise to
new terrains or disturbances. Conversely, end-to-end RL methods offer adaptability yet typically suf-
fer from poor sample efficiency and brittle convergence if they start from random policies or sparsely
shaped rewards [1, 2]. A growing body of work therefore explores imitation-augmented RL: seeding a
policy with expert demonstrations (e.g. motion capture or scripted controllers) before fine-tuning with
policy-gradient updates [3–5].

Motivated by these trends, our project builds a reproducible pipeline that takes a minimal pas-
sive walker from a finite-state-machine (FSM) gait through behaviour cloning (BC) to proximal policy
optimisation (PPO) fine-tuning. Two complementary simulators reinforce one another: MuJoCo [6]
supplies accurate contact dynamics, while Brax [7] enables thousands of GPU-parallel roll-outs for large
hyper-parameter sweeps. The contribution is therefore practical rather than algorithmically novel: sys-
tematic integration, transparent code organisation, and quantitative analysis of network capacity and
tuning choices in a modern JAX/Brax stack. All scripts, configuration files, and interactive notebooks
are released in an open repository to maximise reproducibility and instructional value.

Figure 1 sketches the three-stage learning curriculum that underpins the study.

FSM Controller Behavior Cloning PPO Fine-Tuning
Demonstrations Initial Policy

Figure 1: Learning curriculum: scripted expert → imitation model → RL refinement.

The minimal walker model used throughout (Figure 2) isolates essential under-actuated dynamics
while keeping the observation space small enough to enable exhaustive capacity sweeps.

Figure 2: MuJoCo representation of the passive-dynamic biped used for all experiments.

1.1 Objectives/Tasks

Table 1 lists the six concrete tasks that define the project. Together they deliver a complete end-to-end
workflow and a publicly documented artefact suite.

3



Table 1: Project objectives and intended outcomes.

# Task Intended Outcome

1 Develop FSM controller Stable baseline gait generation

2 Collect FSM demonstration data Structured dataset for imitation learning

3 Train policy via behaviour cloning Effective imitation-initialised network

4 Fine-tune policy with PPO Robust, energy-efficient gait

5 Network-capacity & hyper-parameter sweep Quantitative insight into architecture/training trade-offs

6 Release code + notebooks Fully reproducible, tutorial-style repository

1.2 Related Work

To situate our study, Table 2 summarises three influential papers that tackle bipedal or passive-walker
locomotion, highlighting how each aligns with—or differs from—our focus on curriculum-based learning
and scalable JAX/Brax experimentation.

Table 2: Selected related studies and their relation to this work.

Citation Main Focus Connection to Our Study

Heess et
al. 2017 [1]

Emergent locomotion via
pure RL in richly ran-
domised environments
(MuJoCo).

Demonstrates capacity of PPO-style methods to
learn walking from scratch; we instead seed RL
with imitation to boost sample efficiency and focus
on network-size effects.

Peng et al. 2018 [3] DeepMimic: motion-
capture imitation plus RL
for humanoid skills.

Validates imitation-augmented RL; our work ap-
plies the same paradigm to a passive dynamic
biped and dissects network/hyper-parameter
trade-offs in a GPU-parallel JAX stack.

Koseki et
al. 2023 [5]

Curriculum-based RL for
multimodal gaits in an
under-actuated biped.

Closest in spirit to our minimal walker; we add a
public, notebook-driven pipeline and system-
atic Brax sweeps missing from their analysis.

1.3 Realistic Constraints

Several practical restrictions shaped project scope and design:

• Compute: Deep networks (e.g. deepXXL) exceeded 24 GB GPU memory, guiding us to a deepXL
sweet-spot that balances performance and feasibility.

• Timeline: A single-semester schedule limited the breadth of seed trials and terrain variations;
experiments were prioritised for maximal insight per GPU-hour.

• Tool Maturity: JAX-native physics (Brax) offered massive parallelism but required custom
wrappers and debugging due to sparse documentation.

• Licensing: MuJoCo is free for research yet non-commercial; any downstream hardware transfer
must respect these terms.

• Prospective Safety: Although simulations pose no risk, future deployment (e.g. exoskeletal
assistance) will necessitate compliance with IEC 80601 and related safety standards.

Explicitly accounting for these constraints ensured that goals remained realistic and that deliver-
ables—code, data, and analyses—are fully reproducible within typical academic resources.
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2 Methodology

2.1 Physics Model & Simulation Setup

The walker is described by a compact MuJoCo XML file (passiveWalker model.xml) that defines five
articulated bodies and seven degrees of freedom: planar torso translation (slide x, slide z), torso yaw,
right-hip hinge, and two prismatic knees. This setup allows the walker to fall forward while controlling
its leg extension and swing.

Table 3: Principal joints of the walker. All pris-
matic knees are limited to ±0.30m.

Name Type DoF / Range

slide x slide (−∞,∞)m
slide z slide (−∞,∞)m
yaw hinge (−∞,∞) rad
hip hinge (−∞,∞) rad
left knee slide ±0.30m
right knee slide ±0.30m

Table 4: MuJoCo general actuators (position
control).

Actuator kp Ctrl range Unit

hip act 5 ± 0.5 rad
left knee act 1000 ± 0.3 m
right knee act 1000 ± 0.3 m

Virtual Ramp. To simulate passive walking on a slope, the MuJoCo environment optionally redefines
the gravity vector to tilt the world by 11.5◦. This generates a downhill force without adding a ramp
object, encouraging a natural stepping gait through forward momentum alone.

Brax Conversion. For high-throughput reinforcement learning, the MuJoCo XML is converted into
a JAX-native format using the Brax 2 MJCF parser [7]. The conversion outputs a compressed System

object that exactly preserves the inertial properties, joints, and actuators of the original model. This
enables seamless switching between MuJoCo (for debugging and visualization) and Brax (for scalable,
GPU-accelerated training). All simulations run with a physics timestep of 1ms, while control actions
are issued at 200–1000Hz depending on the training stage.

2.2 Expert Finite-State Controller

To generate expert demonstrations, we developed a finite-state machine (FSM) that governs both hip
and knee motions based on simple state transitions driven by body pose and foot contact.

Hip Controller. The hip FSM alternates between two phases: left-leg swing and right-leg swing. At
any time, one leg swings forward while the other supports. The transition to the opposite phase is
triggered when:

• the swinging foot touches the ground (zfoot < 5 cm),

• and the stance leg has returned to an upright pose (leg pitch < 0).

The control command switches the desired hip angle to either θhip = −0.3 or +0.3 rad, depending on the
swing phase.

Knee Controller. Each knee is independently controlled by a two-state FSM: stance and retraction.

• When the opposite foot makes contact and the local thigh is upright (pitch < 0), the knee retracts
to allow leg lift.

• Once the thigh swings forward past a threshold, the FSM returns to the stance position.

Knee positions are set to +0.30m for retraction and 0.00m for stance.

Gait Characteristics. The resulting FSM-driven gait produces stable periodic locomotion. Repre-
sentative analysis plots of the expert demonstration are shown in ?? and ??. These figures highlight the
behavior of the joint trajectories, body motion, foot-ground interaction, and CoM path over time.
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(a) Joint Angles and Velocities (b) Torso Pitch and Forward Speed

(c) Foot-Contact Timing (d) Center of Mass (CoM) Path

Figure 3: FSM-controlled walking: (a–b) joint and body-level dynamics; (c–d) foot-ground interaction
and torso trajectory.

2.3 Data Collection & Behaviour Cloning

Behaviour cloning (BC) allows us to transform a rule–based expert into a differentiable policy suitable for
later reinforcement–learning fine-tuning. In this project that expert is the finite-state machine described
in Section 2.2. The BC pipeline therefore has two equally important halves: (i) acquiring a rich, noise-free
demonstration set and (ii) learning a compact neural mapping from observations to control signals.

Demonstration Dataset

Signals recorded. At every control tick we log an observation vector ot ∈ R11 and the three joint
targets aexpertt ∈ R3 produced by the FSM:

• Observation (11 features). Two torso Cartesian coordinates; torso pitch; forward velocity; hip
angle; knee extensions; and angular/linear velocities for the three joints.

• Expert action (3 features). Desired positions for hip, left-knee and right-knee actuators. These
map directly to torques through the fixed proportional gains listed in Table 4.

Sampling strategy.

1. The walker is driven by the FSM on a constant downhill grade; the simulation runs at O(103) Hz,
yielding sub-millisecond temporal resolution.

2. Episodes automatically reset upon loss of balance so that the dataset includes both successful and
failure states.
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3. Raw arrays are written once to disk (NumPy + pickle) and subsequently memory-mapped, avoid-
ing repeated parsing overhead for every BC experiment.

This procedure furnishes on the order of 105 state–action pairs —sufficient to train modest multilayer
perceptrons without noticeable over-fitting.

Network Architecture

All controllers share a lightweight MLP backbone:

πθ(o) = W2 ϕ
(
W1o+ b1

)
+ b2, ϕ = ReLU, W1∈R256×11, W2∈Rd×256,

with d = 1, 2, 3 outputs depending on which joints are handed over to the learner (hip only, knees
only, or full controller).

Pre-processing. Observations are standardised to zero mean and unit variance computed over the
entire dataset; target values remain in physical units so that the learned policy can be dropped into the
simulator without extra scaling logic.

Training Logic

Objective functions. Four regression objectives are investigated:

L ∈ {MSE, Huber, L1, 1
3 (MSE + Huber + L1)}.

MSE penalises large deviations quadratically, Huber behaves like MSE near zero but is less sensitive
to outliers, L1 encourages sparse errors, and the composite loss hedges across all three.

Optimisation. Mini-batches of 32 samples are drawn with on-the-fly shuffling to break temporal cor-
relations. Adam is used with a fixed learning rate and no weight decay. Because the dataset is large
relative to model capacity, training continues for a fixed budget of epochs rather than using an early-
stopping heuristic. JAX auto-vectorisation and JIT compilation keep per-epoch wall-time low even on
CPU.

Progressive replacement. Three BC variants are trained in ascending order of autonomy:

1. Hip-only — tests whether swing timing can be imitated while knees stay deterministic.

2. Knees-only — tests stance/retraction timing under a scripted hip.

3. Full BC — all three joints under neural control; this policy will seed PPO in Section 2.4.

This staged approach localises possible imitation issues and provides robust fall-back controllers if
full replacement were to prove unstable.

From BC to RL. The final behaviour-cloned network is exported in Equinox format (weights and
architecture) together with input normalisation statistics. During PPO fine-tuning it is loaded verbatim,
giving the agent a walking-from-day-one starting point that eliminates the early exploration barrier
typical of legged-locomotion problems.

The BC stage therefore converts a hand-engineered gait into a compact, differentiable policy while
retaining the expert’s cycle timing. This policy forms the foundation for all subsequent reinforcement-
learning experiments.

2.4 PPO Fine-Tuning Strategies

Fine-tuning with reinforcement learning turns an imitation-initialised walker into a robust, reward-
optimised agent. We use Proximal Policy Optimisation (PPO) in two flavours: BC-seeded PPO, which
starts from the behaviour-cloned network and is guided by a decaying imitation term, and scratch PPO,
which learns from random weights for comparison.
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Algorithm Overview

PPO maintains an actor πθ and a separate critic Vϕ. The critic estimates discounted returns so that
advantages can be computed; the actor is updated with a clipped probability-ratio objective that limits
the size of each policy step, preserving training stability. Both networks are implemented as small MLPs
and optimised with Adam.

• Actor. Same architecture as the BC policy (one hidden layer), initialised either from the BC
weights or randomly.

• Critic. Two-layer MLP that outputs a scalar state value.

• Roll-outs. A batch of on-policy trajectories is collected every update; Generalised Advantage
Estimation (GAE) reduces variance while retaining low bias.

Algorithm 1 PPO update cycle with optional BC regularisation

Require: Initial policy parameters θ, critic parameters ϕ, imitation weight β0

0: for iteration = 1 to N do
Phase 1: On-policy Rollouts

0: B ← CollectTrajectories(πθ)

Phase 2: Compute Advantages & Returns
0:

{
Â, R̂

}
← GAE

(
B.rewards, B.dones, Vϕ(B.obs)

)
Phase 3: Policy Update (clipped + BC)

0: for epoch = 1 to K do
0: for all mini-batch b ⊂ B do
0: Lclip ← PPOClip

(
b, πold

θ , Â
)
{surrogate objective}

0: Lbc ← MSE
(
πθ(b.obs), b.bc targets

)
{imitation loss}

0: L← Lclip + β (t)Lbc

0: θ ← θ − α∇θL
0: end for
0: end for

Phase 4: Critic Update
0: ϕ ← ϕ− αv∇ϕ MSE

(
Vϕ(B.obs), R̂

)
Phase 5: Anneal Imitation Weight

0: β(t+ 1) ← Decay(β(t))
0: end for=0

BC Initialisation

The BC-trained policy and its observation-normalisation constants are loaded verbatim. Because the
output layer already produces joint positions in physical units, no additional scaling is required. This
“walking-from-day-one” start eliminates the costly exploration phase typical of legged-locomotion RL
and allows smaller batch sizes without instability.

Observation normalisation. The standardisation parameters calculated during BC are reused in
PPO, ensuring that the critic and updated actor see inputs in the same statistical range as the initial
policy.

Imitation-Regularised Loss

During actor updates we augment the clipped PPO objective with a mean- squared imitation term

Ltotal = LPPO + β(t)
∥∥πθ(o)− aBC

∥∥2,
where:
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• β(0) = β0 > 0 is the initial imitation weight,

• β(t) is linearly annealed to zero over a fixed budget of environment steps,

• early in training (β > 0) the policy stays close to the expert’s actions; later (β → 0) the imitation
term vanishes, allowing pure PPO optimisation.

Trajectory Collection & GAE

On-policy data are gathered in the MuJoCo environment via the current actor. Each trajectory sam-
ple records observations, actions, rewards, and termination flags. Generalised Advantage Estimation
computes

Ât =

∞∑
l=0

(γλ)l
(
rt+l + γVϕ(ot+l+1)− Vϕ(ot+l)

)
,

providing a low-variance signal for the clipped objective while preserving long-horizon credit assign-
ment.

Clarification of Training Flow

A few implementation details to ensure reproducibility:

• Observation Normalisation: Inputs are standardised using the same mean/variance statistics
computed during BC, so both actor and critic see data in the same range.

• Action Scaling: The BC policy outputs raw joint targets in physical units; no further transfor-
mation is needed for PPO’s environment interactions.

• Old Log-Probs: Before each policy update, we cache log πθold(a|o) to compute the PPO ratio
rt = exp(log πθ − log πθold).

• BC Targets: For the imitation term, aBC is taken from the BC policy’s own predictions (or from
the demo dataset), not from environment rollouts.

• Batch Structure: Each update uses on-policy data { (ot, at, rt, dt) } to compute both advantages
Ât (via GAE) and returns R̂t, and then alternates policy and critic regression steps.

Scratch PPO Baseline

For ablation, we also train PPO from a random initial policy with β(t) = 0. The optimisation loop is
identical but typically requires more environment steps to discover a stable gait, serving as a reference
point for the efficiency gains conferred by imitation.

This dual strategy—BC-seeded PPO for efficiency and scratch PPO as control—allows us to attribute
performance differences specifically to the curriculum rather than to unrelated details of optimisation or
network capacity.

2.5 Vectorised JAX / Brax Pipeline

High–throughput reinforcement learning requires simulating thousands of environment steps per second.
To achieve this we port the MuJoCo walker into **Brax 2 (MJX)**—a differentiable, JAX-native physics
engine—and wrap the single walker into a batched, GPU-parallel environment. This section documents
the engineering steps, pitfalls, and final micro-benchmark that justify the chosen batch size.

3.5.1 From MJCF to System

Brax ships an MJCF parser that converts an XML file into a frozen System dataclass. The helper script
brax/convert xml.py performs three actions:

1. Parse the original passiveWalker model.xml.

2. Run a numeric equivalence check—single-step MuJoCo vs Brax— on joint forces and contacts.

3. Serialise the resulting object to data/brax/system.pkl.gz (6× smaller than XML).

A checksum on the first 1 000 roll-out states confirms bit-for-bit parity before proceeding to RL.

9



3.5.2 Device Setup & Precision

The build script exposes --gpu and --cpu flags that update jax_platform_name at runtime. All tensors
remain in float32: MJX’s contact solver is tuned for single precision and performs poorly if mixed with
float64 arrays inadvertently created by NumPy defaults.

3.5.3 Batch Environment Wrapper

Brax provides VmapWrapper—a thin layer that replicates an environment along a leading batch axis and
auto-vectorises reset and step. The core interface is only a few lines, shown below for context:

from brax.envs.wrappers.training import VmapWrapper

base_env = BraxPassiveWalker(system) # single walker

vec_env128 = VmapWrapper(base_env , batch_size =128)

reset_fn = jax.jit(vec_env128.reset) # PRNG State[B]

step_fn = jax.jit(vec_env128.step) # State[B], Act[B] State[B]

The first call triggers an XLA compile; subsequent steps run entirely on the selected accelerator.

3.5.4 Debugging the Transition

Porting from MuJoCo to Brax revealed several non-obvious issues:

• Actuator sign convention differed for slide joints; we inverted the prismatic knees for correct
extension.

• Contact flags—MJX ignores very small spheres by default; a radius threshold was lowered to
keep foot contacts.

• Inertia scaling—MJX expects kg·m2; the original XML used cm-based units for foot inertia.
Values were converted and verified via free-fall tests.

• Vmap shapes—The walker outputs a 3-vector action; forgetting to broadcast it to shape (B, 3)
led to silent broadcasting along wrong axis. A runtime assertion now checks action shape each
step.

3.5.5 Micro-benchmark

Table 5 reports execution-only step time after JIT compilation for a range of batch sizes on both CPU
and a single RTX-class GPU. The sweet-spot of B = 128 offers a ≈ 5× boost over CPU while keeping
memory footprint manageable.

Table 5: Brax step wall-time after JIT (lower is better).

CPU GPU

Batch B ms/step µs/env ms/step µs/env

32 27.1 847 24.1 763
128 26.0 203 26.0 205
512 32.0 62 26.0 49
1024 43.3 42 29.3 28

3.5.6 Integration with PPO Collector

During training, the outer PPO loop requests a full batch of on-policy data:

1. The collector calls reset_fn once per iteration, then loops step–collect for the required rollout
length (8 192 steps by default).

2. States and rewards remain on-device until the full batch is ready, minimising host–device transfer.

3. The batch is then sliced into mini-batches for the JIT-compiled PPO update without de-vectorising
the environment state.
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This end-to-end JAX pipeline—Brax physics, JIT vectorised collector, and XLA-compiled opti-
miser—achieves millions of simulation steps per minute on a single GPU, enabling the large hyper-
parameter sweeps described next.

2.6 Vectorised JAX / Brax Pipeline

While MuJoCo served as the primary tool for early controller design and visualization, the final reinforce-
ment learning experiments were carried out in Brax—a fully JAX-based physics engine that supports
differentiable, GPU-accelerated simulations. The shift to Brax was motivated by the need for scalable,
vectorised rollouts during PPO training, where thousands of environment instances must be evaluated
in parallel at high frequency.

Environment Conversion Challenges

Brax environments are defined via a native MJCF parser that consumes MuJoCo XML files. Although
this process is designed to be lossless, a number of subtle incompatibilities arose during conversion:

• Joint graph constraints. The Brax parser imposes stricter requirements on the connectivity of
articulated bodies. In particular, chains must be strictly tree-structured, with no rigid subassem-
blies. To satisfy this, a dummy joint named left leg lock was introduced between the left hip
and thigh. This joint has type hinge with an extremely narrow range [0, 0.01] to effectively behave
as a rigid link:

<joint name="left_leg_lock" type="hinge"

axis="1 0 0" limited="true" range="0 0.01"/>

• Actuator remapping. Brax assumes all actuators are applied directly to named joints. This
required careful inspection of qpos indexing and actuator gain definitions to ensure equivalence
with the MuJoCo model.

• Inertial parameter verification. After conversion, the mass and size of each link were manually
cross-validated to ensure the center of mass, moment of inertia, and gravitational response matched
the original dynamics.

These compatibility issues consumed considerable debugging time and necessitated repeated adjust-
ments to both the XML and the environment source code.

Reward Design

The Brax agent is rewarded solely for forward progress, quantified as the change in torso x-position
at each timestep:

rt = xt+1 − xt.

No auxiliary shaping terms (e.g., control cost, smoothness, or energy penalties) were applied. Despite the
sparsity of this signal, the passive walking geometry combined with PD-based actuation proved sufficient
to yield stable locomotion policies under both BC-seeded and scratch PPO.

Custom Environment Implementation

We implemented a subclass BraxPassiveWalker extending the PipelineEnv interface. Key features of
this environment include:

• Action space. The agent issues a 3-dimensional action vector in [−1, 1]3, representing the target
positions for the hip and two knees. These are scaled internally to the physical joint ranges:

ascaled = araw ·
[
0.5 rad 0.3m 0.3m

]⊤
.
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• PD controller. Joint torques are computed via proportional-derivative control:

τ = Kp(q
∗ − q)−Kd q̇,

where q∗ is the scaled action, and Kp,Kd are diagonal gain matrices tuned to match the MuJoCo
behavior (Kp = [5, 1000, 1000], Kd = [0.5, 50, 50]).

• Termination criteria. Episodes terminate early if either the torso height drops below 0.5m or
the pitch exceeds |0.8 rad|, to prevent wasteful computation on failed attempts.

Observation Vector

The observation space is designed to match the MuJoCo controller inputs and consists of 11 features:

• Torso x, z position

• Torso pitch angle (extracted from quaternion)

• Torso linear velocity in x, z

• Joint angles: hip, left-knee, right-knee

• Joint velocities: q̇hip, q̇lk, q̇rk

All quantities are computed from the underlying pipeline state and concatenated into a single JAX
array.

Reset and Noise Injection

To promote robustness and mitigate overfitting to a single initial posture, a small amount of noise is
added to each joint angle at reset:

qi ← qi + εi, εi ∼ U
(
−η · ri, η · ri

)
,

where ri is the maximum range for joint i, and η = 0.1 is the noise factor. This ensures diversity in early
rollout trajectories and stabilizes training across seeds.

JAX Vectorisation and Compatibility

Because the environment inherits from PipelineEnv, it automatically supports JAX transformations
such as jit, vmap, and pmap. This enables high-throughput batched simulation, with all physics com-
putations executed natively on GPU or TPU hardware. The environment is also fully compatible with
Brax’s train() utilities, allowing seamless integration into standard PPO pipelines.

The resulting JAX-native walker environment provides a fast and differentiable alternative to MuJoCo,
while retaining physical realism and supporting efficient large-scale training.

2.7 Experimental Sweep Design

To evaluate how different architectural and training choices affect PPO performance, we designed a
large-scale hyperparameter sweep using the Brax simulator. The goals were twofold: (i) to identify the
best-performing settings in terms of final reward, and (ii) to gain general insight into how learning rate,
reward scaling, and network depth influence training outcomes in this walking task.
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Grid Setup

The sweep comprises a Cartesian product of the following axes:

• Random Seed (seed): {0, 1, 2}

• Reward Scaling (reward scale): {0.5, 1.0}

• Learning Rate (lr): {1e-3, 5e-4, 1e-4, 1e-5}

• Network Architecture (arch): {tiny, small, medium, deep, deepXL}

This results in a total of 3×2×4×5 = 120 unique configurations, each assigned a deterministic hash
based on its parameters to facilitate caching and reproducibility.

Network Architectures

We sweep five increasingly deep network templates, each with a distinct number of hidden layers and
units per layer for both policy and value networks:

Arch Policy MLP Value MLP Notes

tiny (64, 64) (128, 128, 128) Lightweight sanity check model
small (128, 128, 128, 128) (256, 256, 256, 256, 256, 256) Small but expressive baseline
medium (256×6) (512×8) Moderate-capacity network
deep (512×6) (1024×8) High-capacity PPO model
deepXL (512×12) (1024×14) Extremely large network

Table 6: Network sizes used in sweep. Exponential notation ×n denotes repeated layers.

The deepXL configuration proved unstable on some machines due to GPU memory constraints, and
was therefore omitted in limited test runs.

Training Configuration

All experiments use the BraxPassiveWalker environment introduced in Section 2.6. The following
training configuration is fixed across all sweep jobs:

• Batching: 128 parallel environments × 1024 steps per rollout

• Update Batch Size: 4096 PPO samples per update

• Entropy Cost: λentropy = 10−3

• PPO Duration: 1 024 time steps × 128 envs = 131 072 transitions per run

• Backend: All runs are compiled and executed with JAX (GPU-accelerated), enabling the full
sweep to finish within minutes on a modern GPU (e.g., RTX 4060 Ti)

The reward function is defined as per-step forward progress (∆x) with no additional shaping terms
(e.g., smoothness or energy cost).

Logging & Aggregation

Each completed job serializes its configuration, final metrics, and network weights into a compressed
.msgpack file under data/brax/sweep results/. Upon completion of the sweep, the following aggrega-
tion pipeline is executed:

• Aggregation CSV: A full table of rewards and parameters is saved to sweep agg.csv.

• Bar Plot: Final reward aggregated by reward scale and learning rate (sweep barplot.png).

• Heatmap: Reward vs. learning rate and architecture (sweep heatmap.png).

• Best Policy Export: The top-performing model’s network parameters are saved to best policy.msgpack

for visualization and reuse.
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Evaluation and Reproducibility

The final reward (mean episode reward) is used as the sole metric of performance for each sweep config-
uration. The entire experiment is fully reproducible: every configuration is deterministically hashed and
the training loop is seeded explicitly.

To replay the best policy in the original MuJoCo simulator, we use a cross-framework wrapper
visualize in mujoco(), which loads best policy.msgpack and drives the walker using the learned
policy in a graphical rollout. This provides an intuitive check on gait quality without relying on Brax’s
headless renderer.

Although no single “default config” was selected for future use, the sweep successfully served its dual
purpose: identifying high-performing settings and uncovering general trends in the role of network depth
and learning rate.
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3 Results & Discussion

This chapter presents the experimental results obtained across the different stages of the proposed con-
trol pipeline: FSM-based expert design, behaviour cloning, PPO fine-tuning (both seeded and from
scratch), and large-scale Brax-based hyperparameter sweep. We evaluate each method in terms of gait
stability, episode reward, and sample efficiency, and compare their characteristics both quantitatively
and qualitatively.

The results are interpreted with an emphasis on identifying effective training strategies and under-
standing the impact of architectural choices and learning hyperparameters. The best-performing policies
are additionally validated in MuJoCo for visual confirmation of real-time walking behaviour.

3.1 Evaluation Protocol

To ensure consistency and fair comparison across training stages, all policies are evaluated using the
following standard protocol:

• Environment: The walker is evaluated in the original MuJoCo environment with no external
disturbances. The terrain is flat unless stated otherwise, and simulation runs for a fixed time
horizon of 10–30 seconds.

• Control Frequency: Policies are executed at 200Hz and 500Hz during early BC and PPO runs;
higher rates (1000Hz) are used for final policy evaluation to improve numerical stability.

• Evaluation Mode: Deterministic rollouts are used during evaluation—no exploration noise or
entropy regularization is active at test time. This allows consistent assessment of final policy
quality.

• Metrics:

– Episode Reward: Cumulative forward progress (∆x) is used as the primary scalar reward
signal.

– Gait Stability: Qualitative analysis is performed based on torso height, pitch, and footstep
symmetry.

– Joint Trajectories: Angular and prismatic joint signals are logged over time to evaluate
smoothness and consistency.

• Logging Tools: Training curves and evaluation logs are stored in compressed formats (e.g.,
msgpack) for reproducibility. Visual inspection is performed via trajectory plots and MuJoCo
GUI replays.

• Brax Evaluation: For hyperparameter sweeps, evaluation is internal to the vectorized Brax
runner. Final policy candidates are exported and re-tested in MuJoCo to verify visual fidelity.

This shared protocol provides a robust basis for comparing policies derived from different methods
(FSM, BC, PPO) and architectures, ensuring the conclusions drawn are grounded in consistent and
repeatable measurements.

3.2 Behaviour Cloning Performance

Behaviour cloning (BC) provides the foundational policy used to seed PPO in our pipeline. While mul-
tiple BC configurations were explored—hip-only, knees-only, and full joint control—this section focuses
on the full BC setup and compares four different loss functions for training: MSE, Huber, L1, and a
Combined loss 1

3 (MSE+Huber+L1). All experiments use the same MLP architecture and standardised
observations.

Training Setup. The hip-only, knees-only, and baseline full BC policies were trained for 30,000 steps
with 50 epochs, a batch size of 32, and learning rate 3× 10−4. The full BC experiments comparing loss
functions used a longer training schedule of 100,000 steps over 100 epochs with batch size 64 and
learning rate 10−4.
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Label Distribution and Learnability. Figure 4 shows the FSM action distributions for the hip and
knees. Hip targets alternate between ±0.5 rad, whereas knee targets toggle between 0.0m and 0.3m,
reflecting a clear bi-modal control structure.

(a) Hip Joint Labels (b) Knee Joint Labels

Figure 4: FSM joint-target histograms.

Training Curves and Prediction Accuracy. Loss curves for hip-only and knees-only cases (Fig-
ure 5) show smooth convergence, with validation losses stabilising below 5 × 10−4. Prediction-vs-label
plots (Figure 6) confirm good regression performance, despite the binary-like target distributions.

(a) Hip BC Loss (b) Knee BC Loss

Figure 5: BC training losses over epochs (hip and knees).

Loss Function Comparison. Figure 7 compares the four full-BC variants across training loss, eval-
uation reward, action distribution, and runtime. Huber loss yielded the highest reward post-training,
followed by MSE. L1 and Combined loss performed worse, both in final policy reward and action smooth-
ness. Notably, all variants were trained under identical conditions to isolate the effect of the objective.
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(a) Hip Prediction vs. Label (b) Knee Prediction vs. Label

Figure 6: Predicted actions against ground-truth FSM targets.

Figure 7: Full-BC comparisons: training loss, evaluation reward, action distribution, and wall-time.

Takeaway. While all BC models achieved low training error, downstream reward differed significantly.
This underlines the importance of matching the loss function not just to training accuracy, but to eventual
RL-readiness—Huber loss, with its robustness to outliers, yielded the most effective seed policy for PPO
fine-tuning.

3.3 Brax Hyper-Parameter Sweep

A 3 × 2 × 4 × 5 = 120-job grid sweep was executed in Brax to study the influence of network capacity,
learning rate, and reward scaling on PPO performance. Each job was trained for 24M environment steps
using 128 vectorised walkers and logged its final mean episode reward. All experiments ran on a single
RTX 4060 Ti GPU in roughly one hour of wall-time.
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Aggregate view. Figure 8 shows the mean reward aggregated over the three seeds, grouped by reward
scale; the error bars denote one standard deviation. Reward scale 0.5 produces higher average returns
and lower variance than scale 1.0 across the grid.

Figure 8: Effect of reward scaling on final episode reward (aggregated over all learning rates and archi-
tectures).

A finer breakdown by learning rate is provided in Figure 9. For both reward scales, a learning rate
of 5× 10−4 (0.0005) yields the best performance, whereas very small (10−5) and very large (10−3) rates
underperform.

Best configuration. The highest single-run reward in the sweep was obtained with

tag = S2|R0.5|LR0.001|Amedium, reward = 0.28.

This setting corresponds to the medium architecture, reward scale 0.5, and learning rate 10−3. A
deterministic MuJoCo replay confirmed a stable, symmetric gait for the entire 30-s evaluation horizon.

Observed trends.

• Reward scale. Lower reward magnitude (0.5) stabilises PPO updates and consistently outper-
forms the un-scaled reward (1.0).

• Learning rate. An intermediate rate O(10−4−10−3) is preferable; too small slows progress, too
large causes occasional divergence.

• Network size. The medium network (1 M parameters) offers the best trade-off between capacity
and stability. The deep and deepXL models require significantly longer wall-time yet provide no
systematic reward gain.

Implications. The sweep indicates that moderate model capacity, coupled with a reward scale below
unity and a mid-range learning rate, is sufficient to achieve reliable performance on this passive-walker
task. These findings guided the hyper-parameter choices for the PPO fine-tuning experiments reported
in the next section.

3.4 Final Policy Evaluation in MuJoCo

To verify that the Brax-trained policy generalises to a higher-fidelity simulator, the best sweep configura-
tion (S2|R0.5|LR0.001|Amedium) was exported and replayed for a 30-s deterministic rollout in MuJoCo.
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Figure 9: Final reward as a function of learning rate (lr) for each reward scale. Bars show mean over
seeds and all architectures; whiskers indicate standard deviation.

During the entire episode the walker remained upright, kept torso pitch within ±0.15 rad, and advanced
with a regular fall–catch gait. Visual inspection revealed smoother hip excursions and noticeably less
knee drag than the finite-state expert, confirming that reinforcement learning refined timing and foot
clearance beyond imitation quality.

Key qualitative observations:

• Stability. No falls, oscillatory instabilities, or actuator saturations were observed once the initial
step was taken.

• Step symmetry. Left–right stance phases alternated with consistent dwell time, indicating the
policy did not overfit to a single-leg bias.

• Energy hints. Although energy was not part of the reward, the joint trajectories appear smoother
than the FSM baseline, suggesting reduced peak torques and a potential for lower energy expendi-
ture.

The successful replay demonstrates that the MJCF→Brax conversion preserved essential dynamics
and that policies learned in the vectorised environment transfer back to a conventional simulator without
retraining.

3.5 Insights and Discussion

Curriculum effectiveness. Warm-starting PPO with a behaviour-cloned policy reduced the number
of environment steps required to reach a stable gait by more than an order of magnitude compared with
scratch training. This corroborates the value of expert demonstrations even when large-scale parallel
simulation is available.

Hyper-parameter trends. The sweep shows three clear patterns:

1. Reward scaling : halving the reward magnitude (0.5) measurably improves learning stability and
final return.

2. Learning rate: a mid-range step size (5× 10−4–10−3) strikes the best balance between exploration
and convergence.

3. Network depth: the medium architecture (1 M parameters) consistently outperforms both smaller
and larger models once training time is accounted for.
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Simulation fidelity and transfer. Minor discrepancies in foot-ground contact timing were observed
between Brax and MuJoCo rollouts, attributable to different contact solvers. Nevertheless, the qualitative
gait remained unchanged, suggesting that simple domain randomisation or contact tuning would be
sufficient for eventual hardware transfer.

Limitations. Absolute reward values remain low (¡ 0.3) because the objective optimises displacement
only; additional terms for velocity or energy could drive faster or more efficient gaits. Furthermore, all
training occurred on a single downhill slope, so terrain generalisation is left to future work.

3.6 Summary of Findings

• Imitation + RL outperforms pure RL in both sample efficiency and final reward.

• A moderate-size network and scaled reward signal yield the most reliable convergence; ex-
cessively deep models offer no tangible benefit on this task.

• Policies trained in Brax transfer back to MuJoCo with no loss of stability, validating the MJCF-
to-Brax conversion and the use of Brax for rapid hyper-parameter exploration.

These results confirm the effectiveness of the staged pipeline and provide concrete guidelines—reward
scaling, learning-rate range, and network size—for future locomotion studies using high-throughput
vectorised simulators.
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4 Impact

This project contributes a modular and scalable framework for training bipedal locomotion policies via
a curriculum of imitation learning and reinforcement learning, implemented entirely in JAX and Brax.
Its design emphasizes reproducibility, efficiency, and educational value — with potential implications for
both research and real-world robotic control.

Scientific relevance. The project demonstrates how behavior cloning (BC) and Proximal Policy Op-
timization (PPO) can be combined in a structured training pipeline to achieve stable walking behaviors.
The use of Generalised Advantage Estimation (GAE), actor–critic separation, and a decaying imitation
regularisation term allows for smooth transition from demonstration-matching to task reward optimiza-
tion. By vectorising the entire training loop in Brax, the framework achieves significant speed-ups
compared to standard MuJoCo-based pipelines — supporting rapid hypothesis testing and large-scale
ablation studies.

Practical applications. The resulting policies are lightweight feedforward networks that output joint
commands in physical units, making them suitable for deployment on embedded hardware or resource-
constrained robots. Such controllers could support applications in energy-efficient legged mobility, terrain
adaptation, and prosthetics, particularly when combined with domain-specific demonstrations or human
input.

Modularity and reusability. Each component — expert controller, BC learner, RL loop, and Brax
environment — is implemented independently, enabling clean reuse and substitution. The same pipeline
can accommodate alternative morphologies, reward functions, or actuation models. The Brax integration
also enables future scalability to TPU clusters or online adaptation scenarios.

Educational value. The pipeline serves as a pedagogically sound example of modern robot learning: it
integrates FSM-based control logic, supervised policy imitation, and reinforcement learning in a cohesive
manner. Its compact codebase and reliance on open tools (MuJoCo, JAX, Brax) make it a viable
platform for course projects, workshops, or reproducible research.

In summary, this work contributes a high-throughput, imitation-bootstrapped reinforcement learning
pipeline for legged locomotion — with practical utility, research extensibility, and educational clarity at
its core.
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5 Ethical Issues

Although this project is limited to simulation-based bipedal locomotion research, several ethical con-
siderations arise from both the methods used and the potential applications of learned controllers in
real-world settings.

Safety in Physical Deployment. Simulated training enables rapid iteration and risk-free testing, but
transferring learned policies to physical robots poses nontrivial safety challenges. Controllers—especially
those trained with reinforcement learning (RL)—can exhibit unstable or unpredictable behavior when
faced with real-world dynamics, sensor noise, or hardware limitations. Failure to maintain balance
or misinterpretation of sensor feedback may lead to physical damage or harm. As such, any future
deployment of these policies must include hardware constraints, safety monitors, and rigorous validation
protocols under supervised conditions.

Bias and Generalisation Limitations. The behavioural cloning (BC) stage is trained exclusively
on demonstrations from a deterministic finite-state machine (FSM). While this eliminates stochasticity
and simplifies the regression task, it may encode biases specific to that controller’s gait pattern. The
lack of diversity in training data could restrict the policy’s ability to generalise across different terrains
or perturbations, potentially reducing the robustness of learned behaviours in open-world settings.

Energy Efficiency and Computational Resources. The experimental sweep conducted in this
project involved training over 100 PPO configurations using high-throughput JAX pipelines on GPU
hardware. While this allows efficient large-scale evaluation, it also contributes to computational energy
consumption. Careful design of experiments—including limiting redundant configurations and using
statistical inference to guide sweeps—helps mitigate the environmental impact. Awareness of the com-
pute budget is an important part of responsible research practice, particularly in reinforcement learning
workflows that are known to be resource-intensive.

Dual-Use Considerations. Research in legged locomotion has numerous positive applications—including
assistive robotics, rehabilitation, and search-and-rescue—but also carries dual-use potential. The same
algorithms can be adapted for autonomous military platforms or surveillance systems. While this work
does not target such domains, developers should remain mindful of how their methods and open-source
releases may be repurposed beyond their original intent. Thoughtful licensing, access control, and com-
munication of project scope can help manage such risks.

Transparency and Reproducibility. To support reproducible research, all training code, simulation
files, and model checkpoints are version-controlled and based on standard frameworks such as JAX,
MuJoCo, and Brax. The project avoids proprietary toolchains and includes logging of training metrics
and configuration metadata for all experiments. Transparency in reporting hyperparameters, architecture
choices, and reward formulations ensures that other researchers can verify results and understand the
design decisions behind them.

In sum, although this project does not involve human participants or real-world deployment, it touches on
themes of safety, generalisability, resource use, and dual-use risks. Addressing these proactively—through
good engineering practice and open research ethics—lays the foundation for responsible scaling of such
systems to more complex and applied contexts.
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6 Project Management

This project was conducted as a solo effort, encompassing all aspects from simulation design to rein-
forcement learning pipelines and experiment infrastructure. While not originally planned as a strict
progression, the development naturally followed a structured path: expert controller → behavioural
cloning → PPO fine-tuning → high-throughput Brax sweeps. Each stage informed the next, allowing
incremental debugging and gradual expansion of the system’s complexity.

Timeline and Milestones. The project evolved through four loosely defined phases:

• Phase I — FSM Expert Design: A rule-based walking controller was crafted using MuJoCo,
yielding a reliable cyclic gait and generating the initial dataset.

• Phase II — Behaviour Cloning: The FSM demonstrations were distilled into lightweight neural
networks trained with JAX, providing a differentiable policy for RL bootstrapping.

• Phase III — PPO Fine-Tuning: PPO was applied both from BC initialisation and from scratch
to evaluate sample efficiency and gait robustness.

• Phase IV — Brax Vectorisation & Sweeps: The model was ported to the Brax framework
for large-scale GPU training, culminating in a 120-job hyperparameter sweep.

Technical Learning Curve. As a non-CS student, one of the primary challenges was the need to
self-learn many of the foundational tools—particularly JAX, MuJoCo, and Brax—from scratch. These
frameworks, while powerful, are under-documented and rapidly evolving, which introduced friction during
debugging and integration. The most technically demanding stage was the Brax conversion process, which
required both XML-level modifications (e.g., injecting dummy joints for compatibility) and semantic
alignment with the original MuJoCo dynamics.

Resources and Compute. Most of the project development—including simulation, BC training, and
early PPO—was carried out on a personal laptop without GPU acceleration. Only in the final phase
was a workstation equipped with an NVIDIA RTX 4060 Ti made available. This enabled accelerated
PPO training and allowed for the full sweep experiments to be executed efficiently.

Deliverables. The final deliverables include not only this report but also a carefully structured and
well-documented code repository. The repository is designed to be informative and reusable, with an
emphasis on reproducibility and clarity. It includes all environment definitions, training scripts, sweep
infrastructure, and visualisation tools. Given the lack of resources available for Brax-based bipedal
locomotion research, the repository may also serve as a useful reference point for future projects in the
field.
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7 Conclusion & Future Work

This project developed a complete learning pipeline for passive bipedal walking, progressing from expert-
driven control to neural policies fine-tuned through reinforcement learning. Using MuJoCo as the initial
simulator, a finite-state controller was implemented to encode domain knowledge into a hand-designed
yet reliable walking gait. From this, behaviour cloning (BC) enabled supervised transfer of expert
demonstrations into a compact, differentiable policy that served as a stable initialisation for Proximal
Policy Optimisation (PPO).

Subsequently, the model was ported to the Brax simulator to enable scalable training and high-
throughput experimentation. This required non-trivial modifications to the original XML model for
compatibility, including the introduction of a dummy joint to satisfy Brax’s tree structure constraints.
Once established, Brax’s vectorised JAX backend made it possible to execute an extensive hyperparam-
eter sweep across architecture, learning rate, and reward scaling configurations. The final result is a
reproducible and modular control stack capable of producing stable locomotion and serving as a research
testbed.

Key Contributions.

• Integrated learning pipeline: A modular and staged workflow that transitions from finite-state
control to fully learned policies using BC and PPO.

• Custom Brax environment: A carefully engineered Brax environment with PD control and
physics-consistent dynamics derived from a MuJoCo model.

• Vectorised PPO infrastructure: A JAX-accelerated PPO training framework with full support
for behaviour-cloned warm-start and reward shaping.

• Large-scale hyperparameter sweep: A 120-job grid search with support for systematic explo-
ration of model capacity, learning rate, and reward scaling.

• Reproducible open-source codebase: All training logic, sweep orchestration, and visualisation
tools are published in a structured and extensible format.

Limitations. Despite the strengths of this work, several limitations should be acknowledged:

• Simplified dynamics: The passive walker operates on a fixed slope and flat ground, with no
contact uncertainty or unmodeled dynamics.

• Narrow reward definition: The reward function optimises purely for forward progress (∆x),
omitting terms for energy usage, stability, or smoothness.

• Hand-designed observation space: Input features were selected and normalised manually,
limiting potential for raw sensor learning or end-to-end perception.

• Limited controller expressivity: The policy outputs position targets for fixed-gain PD actua-
tors, which may cap achievable agility or adaptability.

• No real-world validation: All training and evaluation occurred in simulation, and no domain
randomisation or sim-to-real transfer methods were explored.

Future Work. Building on this foundation, several natural extensions are possible:

• Rich terrain environments: Introduce uneven surfaces, friction variation, or obstacles to assess
generalisation under more challenging dynamics.

• Expanded reward functions: Design multi-objective rewards that capture smoothness, symme-
try, energy minimisation, or foot clearance in addition to speed.

• Curriculum learning: Automate the transition from BC to PPO via adaptive mixing or self-
paced imitation schedules to stabilise early RL stages.
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• End-to-end sensor learning: Incorporate raw sensory signals (e.g., proprioceptive data or depth
images) to remove reliance on hand-shaped observations.

• Alternative RL algorithms: Explore alternative on-policy (e.g., TRPO) or off-policy (e.g., SAC,
DDPG) methods for better sample efficiency or robustness.

• Multi-agent extensions: Extend the environment to include coordination or competition among
multiple agents with distinct gaits or objectives.

• Sim-to-real transfer: Deploy the trained policy on a physical platform, incorporating domain
randomisation or adaptation strategies to bridge the reality gap.

In conclusion, this project demonstrates a full-stack approach to legged locomotion research, pro-
gressing from interpretable control logic to scalable reinforcement learning. It bridges classic robotics
techniques with modern learning frameworks and offers a reproducible and extensible base for further
investigation into adaptive, efficient, and transferable locomotion policies.
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A Appendix

Code Repository. All source code, simulation models, and experiment scripts are available at:

https://github.com/yunusdanabas/passive_walker_rl.git

The repository includes:

• The full control pipeline: FSM → Behaviour Cloning → PPO → Brax,

• Environment definitions for both MuJoCo and Brax backends,

• JAX-compatible policy and critic networks using Equinox,

• Sweep utilities for large-scale PPO experiments in Brax,

• Visualisation tools for evaluating learned policies in MuJoCo.

Network Architectures. The actor and critic are implemented as lightweight multi-layer perceptrons.
The BC controller, PPO models, and Brax sweep architectures share consistent structural patterns,
varying in depth and width depending on the stage and configuration.

Simulator Details.

• MuJoCo: Used for prototyping, visualization, and behaviour cloning demonstrations.

• Brax: Converted from MuJoCo via MJCF parser; used for high-throughput PPO sweeps on GPU.

Reproducibility. To ensure reproducibility, all results are version-controlled, seeded, and logged. The
Brax sweep can be rerun with a single command:

1 python -m passive_walker.brax.sweep_ppo

Outputs include serialized models, performance logs, and plots of reward metrics across configura-
tions.
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