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Abstract

This report presents a real-time vision-based ges-
ture teleoperation system for mobile robots that elim-
inates dependency on physical input devices. Ad-
dressing cost and accessibility barriers in traditional
methods (joysticks, steering wheels), our solution
uses standard webcams/RGB-D cameras to capture
hybrid gestures: static poses (Stop, Speed Up/Down)
classified by a lightweight MLP (99.65% accuracy) and
dynamic trajectories (Turn Left/Right, Forward) recog-
nized by an efficient LSTM (99.77% accuracy). The
pipeline leverages MediaPipe for hand landmark ex-
traction and TensorFlow Lite for deployment, achiev-
ing 13-25ms latency on consumer hardware. ROS-
integrated gesture mapping enables real-time control
in Gazebo simulations. Key contributions include: (1)
Dual-branch architecture enabling proportional steer-
ing and discrete commands, (2) Containerized imple-
mentation supporting CPU/GPU environments, and
(8) Open-source release with full reproducibility. Ex-
perimental validation confirms robust performance un-
der real-time constraints, providing a practical alterna-
tive where conventional controllers are infeasible.
Keywords: Gesture teleoperation, human-robot inter-
action, MediaPipe, ROS, Gazebo, real-time vision.

1. Introduction

Robot teleoperation traditionally relies on physical in-
put devices such as joysticks, keyboards, or spe-
cialized steering wheels (e.g., Logitech G29). While
these devices offer reliable and responsive control,
they create significant barriers related to cost, porta-
bility, and accessibility, especially in educational con-
texts, assistive robotics, or field-deployable systems.
Gesture-based Human—Machine Interaction (HMI) of-
fers a promising alternative, enabling intuitive, natural

control of robotic systems without requiring special-
ized or costly hardware.

However, current gesture-based teleoperation solu-
tions often either depend on expensive depth sensors
or wearable devices, or lack robust continuous con-
trol capabilities, limiting their practical applicability and
adoption [3, 6]. A low-cost, camera-only solution ca-
pable of real-time, proportional steering and discrete
command recognition remains an open research chal-
lenge.

To address these limitations, this project intro-
duces a real-time, vision-based gesture teleoperation
pipeline for simulated mobile robots. Using a stan-
dard webcam or affordable RGB-D camera, the sys-
tem captures visual hand gestures, supporting both
discrete pose-based commands (e.g., Stop, Speed
Up, Speed Down) and continuous steering gestures
(e.g., Turn Left, Turn Right), forming a versatile, hybrid
control interface (Figure 1).
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Figure 1. Simplified system diagram illustrating the flow from
gesture capture to simulated robot control.

The pipeline leverages MediaPipe for robust extrac-
tion of 21 hand landmarks per frame, with gesture



classification achieved using lightweight neural mod-
els deployed through TensorFlow Lite. Individual static
hand poses are classified via a compact neural net-
work, while multi-frame gesture trajectories are pro-
cessed by an efficient LSTM-based model (see Sec-
tion 3 for implementation details). Recognized ges-
tures are then translated into velocity commands using
ROS (Robot Operating System) and executed within a
Gazebo simulation environment.

The complete system is fully open-source and re-
producible, with containerized deployments optimized
for both CPU and GPU environments. It accommo-
dates a variety of camera hardware, including stan-
dard webcams and Intel RealSense cameras. Exper-
imental results demonstrate that our gesture classi-
fiers achieve up to 99% accuracy and operate com-
fortably in real time, even on resource-constrained de-
vices (Section 4).

In summary, this work presents a practical,
lightweight, and extensible gesture-based teleoper-
ation framework. It demonstrates robust real-time
control capabilities, providing a compelling proof-of-
concept for vision-driven robotic teleoperation in sce-
narios where traditional control hardware is infeasible
or undesirable.

2. Problem Description

2.1. Context and Present Practice in Mobile-Robot
Teleoperation

Most mobile robots in education, research, and in-
dustrial contexts rely heavily on traditional input de-
vices such as joysticks, keyboards, or commercial-
grade steering wheels (e.g., Logitech G29). While
these devices are effective and reliable, they introduce
significant barriers including increased costs, reduced
portability, and limited accessibility—particularly for
novice or mobility-impaired users. Vision-based ges-
ture control methods have emerged as promising al-
ternatives, offering comparable expressiveness with
significantly reduced hardware demands.

2.2. Prior Gesture-Based Teleoperation Approaches

Existing gesture-based teleoperation systems primar-
ily use one of three hardware classes: RGB-only cam-
eras, depth or infrared (IR) sensors, and wearable in-
ertial measurement unit (IMU)-based gloves. Each
technology has specific strengths and limitations, as
summarized in Table 1.

While RGB-only (camera-based) approaches are
particularly appealing due to their affordability and
simplicity, they typically suffer from lower robustness
to environmental variability, limited continuous con-

Family Hardware Examples Pros / Cons
Camera-only Webcam [6, 7] + Low cost

— Lighting sensitive
Depth /IR Kinect, Leap Motion [1, 3] + Accurate 3-D

— Higher cost
+ Robust
— Requires to wear equipment

Wearable IMU  Data-glove, armband [4, 5]

Table 1. Typical gesture teleoperation technologies for mo-
bile robots.

trol capabilities, and inconsistent integration with stan-
dard robotics middleware like ROS. Depth-sensing
and wearable systems address robustness concerns
but do so at increased hardware complexity and user
inconvenience.

2.3. Key Gaps Identified

Analyzing existing approaches, we identify four signif-

icant gaps that our project aims to address:

G1 Cost-effectiveness: Many high-performance
systems still require costly dedicated depth sen-
sors or instrumented gloves, limiting widespread
adoption.

G2 Continuous control capability: Few camera-
only solutions offer proportional steering along-
side discrete commands, constraining user con-
trol granularity.

G3 Turn-key reproducibility: Fully containerized,
easy-to-deploy ROS and Gazebo pipelines with
reliable performance on both CPU and GPU are
rare, hindering educational and research use.

G4 Latency measurement: Existing literature rarely
provides detailed per-frame latency analyses un-
der realistic simulation loads, limiting confidence
in real-world usability.

2.4. Research Question and Objectives

Motivated by these gaps, this project seeks to answer
the following research question:

Can an RGB-only, lightweight vision-based pipeline
achieve real-time (<30 ms), robust (>97%) gesture
teleoperation of mobile robots in ROS/Gazebo without
specialized hardware?

To systematically address this question, we estab-
lish the following measurable objectives:

» Accuracy: Achieve at least 99% accuracy for static
gesture recognition and at least 99% accuracy for
dynamic (steering) gestures, as validated in Sec-
tion 4.

* Responsiveness: Maintain end-to-end latency
around 25 ms on CPU and approximately 13 ms on
GPU setups while actively running Gazebo simula-
tions (see Section 3.6).



Study (Year) Method/Device Env./Application Key Contributions & Accuracy
Raheja etal. (2015) [3] Kinect RGB-D, Indoor HRI 96.9% static gesture accuracy;
DTW/HMM demonstrated RGB-D teleoperation

AutoNav
(2024) [7]

Olikkal et al. (2024) [2]

Teleop

Trinh et al. (2023) [6]

Our Project (2025)

Webcam + MediaPipe

MediaPipe + biomimetic
DNN

Webcam + TFLite

Webcam + TFLite (MLP
+ LSTM) Docker

Multi-robot Gazebo

Humanoid robot hand

control
ROS-based teleoperation

ROS + Gazebo for mo-
bile robots

feasibility

50% task-time improvement using
discrete gestures

95.7% across 33 static poses

Open-source ROS integration; no
continuous steering

99% static and steering accu-
racy; <13 ms latency on GPU; hy-

(CPU/GPU)

brid discrete/continuous control;
fully reproducible

Table 2. Summary and comparison of influential gesture-control studies with the proposed method.

 Hybrid control: Support at least four discrete com-
mands and three proportional steering commands
to enhance control expressiveness.

* Reproducibility: Provide a fully reproducible,
single-command Dockerized deployment compati-
ble with CPU and GPU hosts and capable of sup-
porting commodity cameras such as standard web-
cams or Intel RealSense.

2.5. Comparison with Existing Methods

Table 2 situates this project’s contributions within the
landscape of influential recent gesture control stud-
ies. Our solution uniquely combines high accuracy,
thoroughly measured real-time latency performance,
and comprehensive reproducibility via a containerized
ROS and Gazebo stack.

3. Methods

3.1. System Overview

Figure 2 presents the complete architecture of the
developed gesture-based teleoperation system. A
30 FPS camera stream (webcam or Intel RealSense
D435) is published by a ROS node. A dual-branch
gesture recognition module classifies static and dy-
namic hand gestures, mapping these to semantic ve-
locity commands. A dedicated ROS mapping node
then converts gesture labels to /cmd_vel twist com-
mands, driving a differential-drive robot simulated in
Gazebo.

3.2. Hardware & Software Stack

Development initially targeted a Lenovo ThinkPad E14
(Intel i5-10210U, no GPU) and later migrated to a

desktop with an NVIDIA RTX4060 Ti GPU. Docker-
ized deployments ensure consistent and reproducible
setups on Ubuntu hosts (20.04 to 24.04).

Component Specification

RealSense D435 or V4L2 webcam
(960x540 px, 30 FPS)

MediaPipe Hands v0.10 (21 land-
marks)

TensorFlow Lite v2.13 (MLP/LSTM,
FP16 quantized)

CUDA 11.8 + cuDNN 8 (optional,
i 8 ms inference)

ROS Noetic (Docker)
Gazebo 11 (diff-drive controller)
Python 3.8 (Bash scripts)

Camera

Vision middleware
ML inference
GPU delegate

Robot middleware
Simulation
Languages

Table 3. Summary of hardware and software components.

3.3. Data Acquisition Pipeline

Camera abstraction. The
camera_publisher_node.py standardizes V4L2
webcam and RealSense D435 inputs into a sin-
gle ROS topic (/image_raw). Decode latency is
consistently below 0.6 ms on GPU hardware.

Steering-wheel rig. A matte-black steering wheel is
mounted on a stable 3D-printed base, clamped to a
hobby vise (Fig. 3). The Intel RealSense D435 camera
is positioned approximately 25cm behind the wheel
(not fixed), directly facing the user’s hands (Fig. 4).
This setup ensures consistent MCP (Metacarpopha-
langeal) trajectory capture.
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Figure 2. Detailed system diagram: camera ingestion, gesture inference (static and dynamic branches), ROS topic flow, and

Gazebo actuation.

Figure 3. 3D-printed mount for stable steering wheel posi-
tioning.

Recorder GUI. A custom GUI visualizes the real-
time MediaPipe landmark detections, allowing quick
gesture labeling (via number keys). It records either:
(i) a 42-dimensional vector (21 keypoints x 2D) for
static gestures, or (ii) a 128-dimensional vector (16
consecutive frames x 4 MCP joints x 2D) for dynamic
gestures. Live annotation significantly reduces label-
ing errors (Fig. 5).

Figure 4. Complete setup for capturing steering gestures.

Dataset composition. The complete
dataset—collected from a single participant—was
divided in two steps. First, 25% of the samples were
set aside as an untouched test set. The remaining
75% were then split 80/20 into frain and validation
subsets, yielding per-class proportions of roughly
60% train, 15% val, and 25% test. Table 4 details the
exact counts for each gesture.
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Figure 5. Recorder GUI showing real-time landmark detec-
tion and labeling interface.

frames of 4 MCP joints (128D input vector).

The 4 MCP joints correspond to indices 5 (In-
dex_.MCP), 9 (Middle_.MCP), 13 (Ring_-MCP), and 17
(Pinky_MCP) in the hand landmark set shown in Fig-
ure 6. FP16 quantization allows inference under
8.5ms on GPU.

Branch fusion. Angular velocity changes (Turn
Left/Right) require the Holding Wheel gesture. Linear
velocity (Speed Up/Down) is adjusted without holding
the wheel. Gesture outputs are majority-vote smooths
over 16 frames to eliminate transient noise.

3.5. ROS-Gazebo Integration & Control Mapping

All ROS nodes run inside a single Docker container,
communicating via ROS topics as depicted in Fig-

Branch Label Total Train Val Test X .
ure 2. Gesture labels map directly to velocities (Ta-
Stop 1822 1089 269 464 ble 5)
. . Holding Wheel 547 344 78 125 '
Static (Keypoint)
Speed Up 1064 618 167 279
Speed Down 1191 723 180 288 Gesture Linear velocity (m/s) Angular velocity (rad/s)
Turn Left 512 301 82 129 Stop 0.00 0.00
Dynamic (Point History)  Turn Right 504 283 87 134 Speed Up +0.08 No change
Forward 697 443 88 166 Speed Down —0.08 No change
Turn Left No change +0.05
Table 4. Dataset distribution across gesture types after the Turn Right No change ~0.05
60/15/25 train—validation—test spilit. Forward No change No change

3.4. Gesture Recognition Pipeline

The pipeline has two branches:

Static branch. A small MLP (20 — 10 — 4; 1.1k
params) classifies four static gestures (Stop, Hold-
ing Wheel, Speed Up, and Speed Down) from wrist-
normalized 21-keypoint vectors (Fig. 6).
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Figure 6. MediaPipe hand landmark numbering used for
gesture recognition.

Dynamic branch. An LSTM (32 units) followed by
a dense layer (32 units) classifies dynamic gestures
(Turn Left, Turn Right, Forward) from sequences of 16

Table 5. Gesture-to-velocity mapping. Angular commands
require Holding Wheel to be active.

3.6. Performance Benchmarking

Mean latency measurements over 1000 frames con-
firm real-time capability, strongly recommending GPU
deployment for smooth simulation performance (see
Table 8).

3.7. Reproducibility & Release

The complete pipeline is publicly accessible via
GitHub: yunusdanabas/hand_steer_sim, includ-
ing Docker images, pre-trained models, and scripts,
ensuring rapid and hassle-free reproduction.

4. Results

This section presents the experimental evaluation of
our gesture-based control pipeline. Our experiments
are designed to answer the following questions:

1. Can static and dynamic gesture classifiers achieve
high accuracy under limited model size con-
straints?


https://github.com/yunusdanabas/hand_steer_sim

2. Can the system maintain real-time performance
across CPU and GPU setups, even during active
Gazebo simulation?

3. Does the complete ROS-integrated control loop
produce smooth, intuitive robot behavior in simu-
lation?

4. Are certain gestures, such as Forward, more chal-
lenging to reliably detect or maintain in practice?

4.1. Model Performance: Steering Gestures

Two distinct models were trained and evaluated for

gesture recognition:

+ A Keypoint MLP model for static poses (Stop,
Holding Wheel, Speed Up, Speed Down), using 42-
D MediaPipe hand landmarks.

+ A Point History LSTM model for dynamic gestures
(Turn Left, Turn Right, Forward), based on 128-D
MCP joint trajectories over 16 frames.

Training was performed using the Adam optimizer
with a learning rate of 0.001 for up to 1000 epochs.
Early stopping monitored validation loss, halting train-
ing at approximately epoch 100 for the MLP model and
epoch 36 for the LSTM. The data were split into 60%
train, 15% validation, and 25% test (see Section 3.3
and Table 4). All reported metrics reflect final perfor-
mance on the held-out test set; no cross-validation or
multiple random seeds were used. Detailed model ar-
chitectures and training hyperparameters are provided
in Appendix E.

The MLP classifier achieved 99.65% accuracy,
while the LSTM achieved 99.77% macro F1-score.
Confusion matrices for both classifiers are shown in
Figures 7 and 8, with clear class separation.

Training and validation curves show stable conver-
gence. The LSTM model’s validation loss fell below
0.02 early in training.

Gesture Precision Recall F1-Score Support
Stop (0) 1.00 1.00 1.00 464
Holding Wheel (1) 0.99 1.00 1.00 125
Speed Up (2) 1.00 1.00 1.00 279
Speed Down (3) 1.00 0.99 0.99 288
Macro Avg 1.00 1.00 1.00 1156
Weighted Avg 1.00 1.00 1.00 1156
Accuracy 0.9965 1156

Table 6. Classification report — Static Keypoint Classifier
(MLP).

4.2, Latency Analysis

End-to-end latency was measured across three dif-
ferent deployment configurations: a Lenovo ThinkPad
(with and without Gazebo), and a desktop with NVIDIA
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Figure 7. Confusion matrix — Static Keypoint Classifier
(MLP). Axes denote true (Y) vs. predicted (X) labels.
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Figure 8. Confusion matrix — Dynamic Point History Classi-
fier (LSTM). Axes denote true (Y) vs. predicted (X) labels.

RTX 4060 Ti. The “Inference” time includes MediaPipe
detection and MLP/LSTM classification. Display and
publishing overheads were also measured indepen-
dently.

Both GPU and CPU-only configurations (without
Gazebo) achieved real-time performance well below
the 33 ms threshold for 30 FPS interaction.
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Figure 9. Training and validation accuracy — Keypoint MLP
model.
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Figure 12. Training and validation loss — Point History LSTM

model.

Metric (ms) ThinkPad (no Gazebo) ThinkPad (+Gazebo) GPU (4060 Ti)
Decode 0.47 4.69 0.53
Inference 20.10 94.10 8.56
Display 4.26 10.72 4.28
Total 25.03 109.62 13.19
Callback FPS 39.53 9.68 75.69
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Figure 10. Training and validation loss — Keypoint MLP
model.
Training vs. Validation Accuracy
1.0 A A
0.9 4
0.8 1
>
g 074
% 06
0.5 A
0.4 / — train_acc
val_acc
0 5 10 15 20 25 35

Epoch

Figure 11. Training and validation accuracy — Point History

LSTM model.
Gesture Precision Recall F1-Score Support
Turn Left (0) 1.00 0.99 1.00 128
Turn Right (1) 1.00 1.00 1.00 126
Forward (2) 0.99 1.00 1.00 175
Macro Avg 1.00 1.00 1.00 429
Weighted Avg 1.00 1.00 1.00 429
Accuracy 0.9977 429

Table 7. Classification report — Dynamic Point History Clas-

sifier (LSTM).

Table 8. Latency per stage and resulting FPS on different
hardware platforms.

4.3. Simulation Trials

Live gesture-based teleoperation was tested in
Gazebo. The robot performed basic motion com-
mands — forward driving and turning left/right — with
minimal visible lag. Transitions between gestures
were smooth for turns, though occasional flickering
was observed when sustaining the Forward gesture.
The Forward gesture maintains constant angular
velocity as long as the detected class remains un-
changed. Videos of the experiments are linked below:
* Inference Overlay Demo
+ Driving Demonstration in Gazebo

4.4. Model Size and Deployment Efficiency

Both models are compact and designed for low-

latency execution:

» Keypoint MLP: 1.1k parameters, ~4.4kB, 3ms in-
ference on CPU.

» Point History LSTM: 6.4k parameters, ~25kB

(quantized), 8.5 ms inference on GPU.

The models were quantized to FP16 and exported
as .tflite files using TensorFlow Lite. Deployment
was validated on desktop and laptop setups, without
observable accuracy degradation due to quantization.

4.5. Forward-Gesture Challenge

While Forward achieved excellent quantitative results
during training, real-time operation revealed it to be


https://drive.google.com/file/d/1TVqnACMAsV_UAXI_ogMS3fXAkhr-mNMN/view?usp=sharing
https://drive.google.com/file/d/1TkqudJsSXfxzetYAVJHKoW3ILWf8vWRE/view?usp=sharing

harder to maintain than turning gestures. Its subtle,
symmetric nature lacks the lateral displacement seen
in Turn Left or Turn Right, causing occasional misclas-
sification.

This limitation is discussed further in Section 5,
along with potential solutions such as gesture re-
design or semantic refinement.

5. Discussion

This section reflects on system behavior, gesture de-
sign, control responsiveness, and real-world usability
based on empirical observations and qualitative feed-
back from simulation trials.

5.1. Forward Gesture Challenges

Despite achieving high accuracy during offline test-
ing, the Forward gesture showed some practical lim-
itations in simulation. Particularly at the edges of
turning maneuvers, minor hand deviations were of-
ten misinterpreted as steering commands, causing
unintended drift. This issue arises because the cur-
rent model interprets gestures based on relative hand
movements rather than absolute poses, making it sen-
sitive to small, inadvertent motions. Introducing a
dead-zone filter in the wheel_to_twist node could
mitigate these false activations, enhancing robustness
and preventing unintended steering at neutral hand
positions.

5.2. Operator Feedback and Intuitiveness

The overall system demonstrated responsiveness and
consistent performance, with negligible latency across
both GPU-accelerated and CPU-only setups. How-
ever, the metaphor of using a steering wheel for con-
trolling a differential-drive robot created an ergonomic
mismatch between user expectations and actual robot
behavior. Although differential-drive was selected pri-
marily due to simulation simplicity and project time
constraints, transitioning to an Ackermann-steered
simulated vehicle would likely provide a more intuitive
interaction experience.

Despite this metaphorical mismatch, the imple-
mented gesture vocabulary was straightforward and
easily maintained without noticeable user fatigue or
awkwardness during extended sessions. All core ges-
tures (Stop, Holding Wheel, Speed Up, Speed Down,
Turn Left, Turn Right, and Forward) were reliably rec-
ognized and consistently executed.

5.3. Gesture Set Design Considerations

The gesture set was deliberately minimized to en-
sure clear class separation, reduce labeling com-
plexity, and expedite training. Although effective for

the project’s scope, future deployments could ben-
efit from an expanded gesture vocabulary. For in-
stance, incorporating additional static or dynamic ges-
tures—such as finger-based signaling (e.g., turn in-
dicators, lights control)—while maintaining a grip on
the wheel could substantially enhance command ex-
pressiveness. Such expansions might require more
advanced recognition methods, possibly integrating
static classifiers, temporal analysis, or ensemble-
based decision fusion.

5.4. Single-Hand vs. Two-Hand Interaction

The current implementation was optimized for single-
hand interaction to prioritize simplicity and latency.
However, two-handed gestures present a valuable av-
enue for enhancement, potentially enabling more pre-
cise movement detection and additional intuitive com-
mands, such as emergency stops or auxiliary vehicle
controls (e.g., activating lights or signals). Crucially,
integrating these two-handed gestures can be modu-
larly layered atop the existing architecture without ex-
tensive reengineering.

5.5. Control Mapping and Real-Time Feedback

The present control approach relies on discrete ve-
locity increments, simplifying initial testing but limit-
ing fluidity compared to analog controls. A future im-
provement could involve implementing smoother ve-
locity scaling through more nuanced gesture analysis,
potentially leveraging metrics such as gesture trajec-
tory or displacement magnitude. This enhancement
would likely yield more natural and responsive robot
teleoperation.

Moreover, the lack of real-time visual feedback
(e.g., a GUI overlay indicating speed or direction) oc-
casionally left operators uncertain about the robot’s
velocity state, especially during subtle adjustments.
Integrating an intuitive GUI-based speed indicator
would significantly improve user experience and con-
trol precision.

5.6. Deployment Feasibility and Limitations

The developed pipeline demonstrates strong potential
for deployment due to its minimal hardware require-
ments (standard webcams or RealSense cameras),
compact models, and efficient execution on low-cost
hardware. The pipeline remained robust even when
camera positions varied significantly, and its perfor-
mance was consistent across cluttered backgrounds
and varying lighting conditions.

Nonetheless, several aspects would require refine-
ment for practical field use:



» Expansion of the gesture set, validated across di-
verse users to ensure consistent and intuitive com-
mand recognition.

* Incorporation of clear, real-time feedback mecha-
nisms to inform operators about active commands
and system state.

 Recalibration of the steering control logic and veloc-
ity mapping for physical robot dynamics and real-
world vehicle constraints.

5.7. Dual-Branch Fusion Design

The dual-branch design—employing static pose clas-
sification to gate dynamic gesture commands—proved
instrumental in system stability. The Holding Wheel
condition effectively minimized unintended gesture ac-
tivations, ensuring that dynamic steering commands
were recognized only during deliberate user engage-
ment. However, a few isolated misclassifications
occurred, particularly during extensive hand rota-
tions, occasionally interpreting the gesture as Stop.
Nonetheless, this fusion architecture provided a sub-
stantial reliability advantage over simpler, unified
model alternatives, which might otherwise blur the
boundary between intentional motion and idle states.

5.8. Generalizability and Robustness

The chosen MediaPipe Hands framework demon-
strated exceptional robustness against lighting varia-
tions, skin-tone differences, and minor camera move-
ments during training and simulation. Although these
preliminary results are promising, broader validation
is necessary. Future deployments should incorpo-
rate larger-scale user studies to rigorously evaluate
inter-user variability, gesture intuitiveness, long-term
fatigue, and generalization performance, thereby en-
suring broader applicability and reliability.

6. Conclusions

This project demonstrated the feasibility of real-time,
camera-based gesture control for mobile robots, even
on low-end hardware (see Appendix B for detailed
specifications). Using TensorFlow Lite, MediaPipe
Hands, and ROS within a Gazebo simulation pipeline,
we implemented a dual-branch gesture recognition
system—combining static (hand pose) and dynamic
(hand trajectory) classifiers—that achieved minimal la-
tency (13 ms GPU, 25 ms CPU) and high classification
accuracy (99.8% macro-F1).

Despite excellent offline performance metrics, real-
world simulation trials highlighted certain usability
challenges. Notably, the Forward gesture exhibited in-
stability in practical conditions, triggering unintended
drift as discussed in Section 5. This underscores a

crucial insight: high offline test accuracy does not al-
ways translate to optimal real-world usability.

Our design prioritized rapid prototyping and prac-
tical deployment considerations. The resulting
system performs reliably across CPU- and GPU-
based setups, with the complete pipeline—including
training scripts, ROS nodes, and Gazebo envi-
ronment—publicly available for reproducibility (Sec-
tion 3.7). Simplicity and modularity were central de-
sign principles, and the minimal dependencies (Ten-
sorFlow Lite, MediaPipe, ROS Noetic) enable easy
adaptation by robotics learners, hobbyists, or HRI
designers. Containerization with Docker streamlined
setup and ensured consistent performance across en-
vironments, though initial integration required signifi-
cant effort.

The dual-branch fusion approach was particularly
effective, as dynamic steering gestures were reliably
gated by the static “Holding Wheel” detection, signif-
icantly reducing false positives and improving overall
control stability.

Future work could enhance this system substan-
tially. Expanding the dataset with users from various
backgrounds and more varied gestures, such as point-
ing a finger to signal a turn or raising two fingers to tog-
gle lights, would enrich the interaction vocabulary. Im-
plementing continuous proportional control instead of
fixed velocity steps would improve steering fluidity and
user experience. Two-handed gestures, tested initially
on CPU and found computationally intensive, could be
revisited with GPU acceleration without requiring ex-
tensive retraining, thereby adding expressiveness and
intuitive control options. Additionally, migrating from a
differential-drive to an Ackermann-steered vehicle, ini-
tially avoided due to time and complexity constraints,
would align the gesture control interface more natu-
rally with user expectations.

Ultimately, this project confirms that careful design
choices can make vision-based teleoperation acces-
sible, responsive, and practical—even without spe-
cialized hardware such as depth sensors or wearable
devices—demonstrating significant promise for broad,
cost-effective deployment.



References

[1] Jiahao Chen. Gesturemoro: Gesture-based mobile
robot teleoperation with leap motion, 2024. Accessed:
2024-05-30. 2

[2] Parthan Olikkal, Dingyi Pei, Bharat Kashyap Karri, Ash-
win Satyanarayana, Nayan M Kakoty, and Ramana Vin-
jamuri. Biomimetic learning of hand gestures in a hu-
manoid robot. Frontiers in Human Neuroscience, 18:
1391531, 2024. 3

[3] JL Raheja, M Minhas, D Prashanth, T Shah, and A
Chaudhary. Robust gesture recognition using kinect: A
comparison between dtw and hmm. Optik, 126(11-12):
1098-1104, 2015. 1,2, 3

[4] OSU Robotics. Turtlebot imu glove controller, 2021. Ac-
cessed: 2024-05-30. 2

[5] ROMR Team. Imu-based teleoperation for ros mobile
robots, 2022. Accessed: 2024-05-30. 2

[6] Huy Trinh. Hand gesture teleoperation with ros and me-
diapipe, 2023. Accessed: 2024-05-30. 1, 2, 3

[7] Lucas Alexandre Zick, Dieisson Martinelli, André
Schneider de Oliveira, and Vivian Cremer Kalempa.
Teleoperation system for multiple robots with intuitive
hand recognition interface. Scientific Reports, 14(1):1—
11,2024. 2, 3

A. Physical Setup CAD and Images

This appendix presents the physical hardware setup
used for collecting steering gesture data. It includes
3D CAD views of both the wheel interface and the
base mounting structure. The physical rig was 3D-
printed and clamped to a stable vise to ensure consis-
tent positioning.

Steering Wheel Interface

The steering wheel used in the capture setup is de-
signed with ergonomic grips and a central hub. Fig-
ures 13 and 14 illustrate the isometric and side views.

'SOLIDWORKS Educational Product. For Insiructionsl Us Only.

Figure 13. Steering wheel — Isometric view.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 14. Steering wheel — Side view.

The physical prototype went through an iteration step
from raw 3D print to a finalized painted version. Fig-
ures 15 and 16 illustrate this transition.



Figure 17. Mounting base — Isometric view.

Figure 15. Unpainted steering wheel

SOLIDWORKS Educationsl Product.For Istructional Use only.

Figure 18. Mounting base — Side view.

Figure 16. Final painted version used during data collection.

SOLIDWORKS Educations! Product.For Instructonsl Use Only.

Figure 19. Mounting base — Front view.

B. System Specifications

Desktop Environment (GPU Host)

» Model: Micro-Star International Co., Ltd. MS-7D67
* Processor: AMD Ryzen™ 9 7900X (24 threads)
To maintain a consistent camera—hand distance and * Memory: 64 GiB
angle, the wheel was attached to a base rig clamped in » Graphics: NVIDIA GeForce RTX 4060 Ti
a bench vise. Figures 17—19 show the CAD drawings. + Storage: 4TB SSD

Mounting Base



« OS: Ubuntu 24.04.2 LTS (64-b|t) Confusion Matrix
» Kernel: Linux 6.11.0-26-generic

400

- Display Server: Wayland, GNOME 46 g I < oo
350
8- 8 9 2 16 7 300
Lenovo ThinkPad E14 (CPU Host)
* Model: Lenovo ThinkPad E14 Gen 2 B § 0 0 176 0 0 0 0
« Processor: Intel Core i5-10210U (4 cores, 8 g
threads) £l 29
* Memory: 16 GiB DDR4 i ’ ’ ’ ’ e
+ Graphics: Intel UHD Graphics .
® Display: 14” FHD |PS (1920)(1080) g, 0 0 0 0 175 0 - 100
« Storage: M.2 NVMe SSD 5
* OS: Ubuntu 20.04.6 LTS & “50
E E 0 2 0 0 0 179
Sté:p Glu Forv:farf! Backlward Turn ‘R\ght Tum‘Leﬂ: 0
C. Previous Static Gesture Model — Accu- Predicted Label
racy, Loss, and Confusion Matrix Figure 22. Confusion matrix — Static gesture model (Key-
point MLP).
raining vs. Validation Accurac - .
TR ——; D. Full Classification Reports

Static Gesture Classifier (Keypoint MLP)

Gesture Precision Recall F1-Score Support
7 Stop 0.99 0.98 0.99 415
041 Go 0.99 0.92 0.95 395
031 - ‘Vf;i"af;c Forward 0.97 1.00 0.98 176
‘ ‘ ! ‘ T Backward 0.98 1.00 0.99 261
0 0 E’)“;ch 10 200 Turn Right 0.92 1.00 0.96 175
Turn Left 0.96 0.99 0.97 181
Figure 20. Training and validation accuracy — Static gesture Macro Avg 0.97 0.98 0.97 1603
model (Keypoint MLP). Weighted Avg 0.98 0.97 0.97 1603
Accuracy 0.97 1603

Table 9. Classification report — Static gestures (Keypoint

MLP model).
s Training vs. Validation Loss
161 e Dynamic Gesture Classifier (Point History LSTM)
144
124
5 101 Gesture Precision Recall F1-Score Support
“ 0 Turn Left 0.99 0.99 0.99 195
0561 Turn Right 0.99 1.00 0.99 178
044 Forward 0.97 0.99 0.98 172
0.2 Macro Avg 0.98 0.99 0.98 545
T = v . - Weighted Avg 0.98 0.99 0.98 545
Epoch Accuracy 0.98 545
Figure 21. Training and validation loss — Static gesture Table 10. Classification report — Dynamic gestures (Point

model (Keypoint MLP). History LSTM model).



E. Model Architectures
Static Gesture Classifier { Keypoint MLP

Layer (type) Output Shape Param #
Dropout (None, 42) 0
Dense (20 units) (None, 20) 860
Dropout (None, 20) 0
Dense (10 units) (None, 10) 210
Dense (4 classes) (None, 4) 44

Total 1114 (4.35kB)

Table 11. Model architecture — Static Keypoint MLP.

Dynamic Gesture Classifier { Point History LSTM

Layer (type) Output Shape Param #
Reshape (None, 16, 8) 0
Dropout (None, 16, 8) 0

LSTM (32 units) (None, 32) 5248
Dropout (None, 32) 0
Dense (32 units) (None, 32) 1056
Dropout (None, 32) 0

Dense (3 classes) (None, 3) 99

Total 6403 (25.01 kB)

Table 12. Model architecture — Dynamic Point-History
LSTM.
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