
EE 521:
Kinematics and Dynamics of

Machines

Term Project:
Kinematic and Dynamic Analysis of

the 3RRP Mechanism

Yunus Emre Danabaş
(yunusdanabas@sabanciuniv.edu - 29359)

January 12, 2025

Abstract

This report presents a comprehensive study of the 3RRP mechanism’s kinematics and dynamics.
The primary objectives include deriving closed-form forward and inverse kinematics, computing the
largest symmetric workspace with full rotational capabilities, evaluating the kinematic Jacobian, and
establishing a Global Isotropy Index (GII) to quantify isotropy within the mechanism’s workspace.

To formulate the dynamic equations of motion, both Kane’s and Lagrange’s methods are em-
ployed. Symbolic derivations leverage Autolev for partial velocity computations and constraint man-
agement, while MATLAB/Simulink implementations verify correctness through numerical simula-
tions. Comparative analyses highlight that Kane’s approach often yields compact symbolic expres-
sions and inherently manages loop-closure constraints, whereas the Lagrangian framework offers an
energy-based perspective but requires explicit constraint enforcement and stabilization (Baumgarte).

Simulation results demonstrate stable end-effector trajectories under small external loads, cor-
roborating the validity of the kinematic and dynamic models. The study concludes with discussions
on the mechanism’s suitability for planar tasks demanding precise positioning, recommendations for
refining models to incorporate non-ideal effects such as friction, and potential directions for advanced
control strategies and real-world implementation.

1

Contents
1 Introduction 3

2 Problem Definition 3
2.1 System Overview . 3
2.2 Mechanism Description . 4
2.3 Scope of Analysis . 5

3 Analytical Derivations and Results 5
3.1 Kinematic Analysis (3RRP Focus) . 5

3.1.1 Symbolic Derivations . 5
3.1.2 Workspace Calculation . 6
3.1.3 Kinematic Jacobian . 7
3.1.4 Global Isotropy Index (GII) . 8

3.2 Dynamic Modeling . 9
3.2.1 System Setup in Autolev . 9
3.2.2 Kane’s Method . 11
3.2.3 Lagrangian Formulation in Autolev with Baumgarte Stabilization 12
3.2.4 Method Comparison . 14
3.2.5 Simulation and Validation Using Kane’s Dynamic Code 16
3.2.6 Kinematic Simulation in Simulink . 19

4 Discussion 21
4.1 Overview of Key Findings . 21
4.2 Analysis of Kinematic Results . 21
4.3 Interpretation of Dynamic Modeling Outcomes . 22
4.4 Comparisons and Correlations . 22
4.5 Practical Implications for 3RRP Mechanism . 22
4.6 Reflections and Future Directions . 22
4.7 Summary of the Discussion . 22

5 Conclusion 23

2

1 Introduction
The study of kinematics and dynamics in robotic mechanisms is crucial for designing reliable and high-
performance machines. Complex mechanisms such as the 3RRP (three revolute-revolute-prismatic)
mechanism, the Linear Delta mechanism, and their combined systems find extensive applications in
robotics and automation. Analyzing these systems demands robust mathematical modeling, rigorous
derivations, and practical implementation strategies to ensure accurate control and simulation.

This project aims to perform a comprehensive analysis of these mechanisms, focusing primarily on
the 3RRP mechanism in Part A, with initial exploratory work on the Linear Delta mechanism in Part B,
and considerations for combining both systems. The objectives include deriving the kinematic equations,
computing the workspace, evaluating the Jacobian and Global Isotropy Index (GII), formulating dynamic
equations using Kane’s and Lagrange’s methods, and implementing simulation models in Simulink for
verification and controller design.

Project Goals: The main goals of this project are:

• To derive closed-form symbolic equations for both forward and inverse kinematics of the 3RRP
mechanism.

• To compute the largest square workspace that allows for all possible end-effector orientations.

• To derive the kinematic Jacobian and compute the Global Isotropy Index (GII).

• To develop equations of motion using Kane’s and Lagrange’s methods and compare their results.

• To implement Simulink models for kinematics and dynamic simulations.

Report Structure: The remainder of this report is organized as follows:

• Section 3: Problem Definition — Describes the mechanisms, system overview, and the scope
of analysis.

• Section 4: Analytical Derivations and Results — Presents the symbolic derivations for
kinematics, Jacobians, dynamics, workspace calculations, and simulation results focused on the
3RRP mechanism.

• Section 5: Discussion — Analyzes the findings, compares methodologies, and discusses chal-
lenges and insights.

• Section 6: Conclusion — Summarizes key outcomes and outlines potential future work, including
further development on Part B and combined system analysis.

2 Problem Definition
2.1 System Overview
The focus of this study is the 3RRP mechanism, a robotic system composed of three serial links connected
by revolute-revolute-prismatic joints. This section provides an overview of the mechanism, its reference
frames, basis vectors, relevant points, and any external forces or torques acting on it. Additionally, we
zoom in on the end-effector configuration for a closer look at its reference frames and orientation.

3

Figure 1: Labeled schematic of the 3RRP mechanism showing reference frames, basis vectors, key points,
and external forces/torques.

The above figure (Figure 1) illustrates the overall structure of the 3RRP mechanism, including all
necessary labels to understand the system’s configuration and the forces applied.

Figure 2: Zoomed-in diagram of the end-effector showing additional frames and detailed orientation.

2.2 Mechanism Description
The 3RRP mechanism features three joints in sequence—two revolute joints followed by a prismatic
joint:

• Degrees of Freedom (DoF): The mechanism provides three degrees of freedom, allowing complex
planar motion of the end-effector.

4

• Joint Types and Characteristics:

– Revolute joints: Allow rotation between links.
– Prismatic joint: Provides linear extension or retraction.

• Inputs and Outputs:

– Inputs: Joint angles and extension lengths (q1, q2, q3).
– Output: Position (x, y) and orientation θ of the end-effector.

• Motion Capabilities: The mechanism can achieve a variety of configurations, and the end-effector
can reach any position within its workspace with full rotational freedom.

2.3 Scope of Analysis
The primary focus of this analysis is on:

• Derivation of forward and inverse kinematics.

• Computation of the workspace and the kinematic Jacobian.

• Evaluation of the Global Isotropy Index (GII).

• Derivation of dynamic equations using Kane’s and Lagrange’s methods.

• Development and verification of Simulink models for simulation purposes.

Although initial work was attempted on the Linear Delta mechanism (Part B), this report emphasizes
the detailed analysis and simulation of the 3RRP mechanism. The combined system will be addressed
in future work.

Assumptions and Simplifications: - The links are assumed to be rigid with symmetric configura-
tions. - Ideal joints with no friction or backlash are considered for simplicity. - External forces/torques
depicted in Figure 1 are included where relevant for dynamic analysis.

3 Analytical Derivations and Results
3.1 Kinematic Analysis (3RRP Focus)
3.1.1 Symbolic Derivations

In this subsection, we present the final closed-form equations for forward and inverse kinematics of the
3RRP mechanism. These equations relate the joint variables q1, q2, q3 to the end-effector’s position (x, y)
and orientation θ. The detailed derivations leading to these equations are provided in Appendix A.

Forward Kinematics: The forward kinematics problem involves computing the end-effector’s position
and orientation given the joint angles. For the 3RRP mechanism, the closed-form equations are:

x = − M√
3(K2 + L2)

, (1)

y = c22 − K

L
c21 − KM√

3L(K2 + L2)
, (2)

θ = arctan 2(K, L), (3)

where:

K = c12 + c32 +
√

3c31 − 2c22 −
√

3c11, (4)
L = c11 + c31 +

√
3c12 − 2c21 −

√
3c32, (5)

M = L(L −
√

3K)c12 − L(K +
√

3L)c11

− (L −
√

3K)(Lc22 − Kc21). (6)

5

The coefficients cij are defined as:

c11 = r cos(q1), c12 = r sin(q1), (7)
c21 = r cos(q2), c22 = r sin(q2), (8)
c31 = r cos(q3), c32 = r sin(q3). (9)

These equations provide a direct method to compute the end-effector’s pose from given joint angles.

Inverse Kinematics: The inverse kinematics problem is the reverse: determining the joint angles re-
quired to achieve a desired end-effector pose (x, y, θ). The closed-form solutions for the 3RRP mechanism
are:

q1 = arctan 2(M1, L1), (10)
q2 = arctan 2(M2, L2), (11)
q3 = arctan 2(M3, L3), (12)

where:

M1 = K1 cos
(

θ + π

3

)
−

√
r2 − K2

1 sin
(

θ + π

3

)
, (13)

L1 = −K1 sin
(

θ + π

3

)
−

√
r2 − K2

1 cos
(

θ + π

3

)
, (14)

M2 = K2 cos (θ + π) −
√

r2 − K2
2 sin (θ + π) , (15)

L2 = −K2 sin (θ + π) −
√

r2 − K2
2 cos (θ + π) , (16)

M3 = K3 cos
(

θ − π

3

)
−

√
r2 − K2

3 sin
(

θ − π

3

)
, (17)

L3 = −K3 sin
(

θ − π

3

)
−

√
r2 − K2

3 cos
(

θ − π

3

)
. (18)

The intermediate variables K1, K2, K3 are given by:

K1 = x sin
(

θ + π

3

)
− y cos

(
θ + π

3

)
, (19)

K2 = x sin (θ + π) − y cos (θ + π) , (20)

K3 = x sin
(

θ − π

3

)
− y cos

(
θ − π

3

)
. (21)

These formulas provide the necessary joint angles to attain a desired end-effector pose, completing the
inverse kinematics analysis.

For the step-by-step derivation of these results, please refer to Appendix A.

3.1.2 Workspace Calculation

To determine the largest symmetric workspace of the 3RRP mechanism, we employed a numerical simu-
lation using MATLAB. The goal was to compute all possible end-effector positions (x, y) reachable under
the assumption of symmetric link lengths l1 = l2 = l3 = L, with L = 200 mm, and verify the achievable
orientations.

Logic Behind the Code: The provided MATLAB code (see Appendix B for full implementation)
performs the following steps:

1. Parameter Initialization: The code sets the link length L and initializes a symmetric link length
parameter r = L. It defines a dense grid of possible joint angles q1, q2, and q3 over the range 0 to
2π radians with a specified resolution.

2. Parallel Computation for Efficiency: Using nested parfor loops, the code iterates over all
combinations of q1, q2, and q3. This parallel approach accelerates the computation by distributing
tasks across multiple cores.

6

3. Forward Kinematics Calculation: For each combination of joint angles, the function calculateEndEffectorPosition3RRP
computes the end-effector’s position (x, y) using the forward kinematics equations. These equations
involve calculating intermediate variables and subsequently determining x, y, and θ.

4. Workspace Data Collection: The code collects all computed (x, y) points corresponding to the
various joint configurations and stores them in arrays.

5. Visualization: Once all points are collected, the code plots them to visualize the workspace. The
resulting plot displays the boundary of the reachable area by the end-effector.

Results: The simulation revealed that the set of all reachable (x, y) positions forms a circular region.
The radius of this circle was found to be approximately 230 mm, which defines the largest symmetric
workspace of the 3RRP mechanism under the given assumptions.

Figure 3: Calculated Largest Symmetric Workspace of the 3RRP Mechanism

3.1.3 Kinematic Jacobian

The kinematic Jacobian matrix J(q1, q2, q3) provides a relationship between the joint velocities q̇1, q̇2, q̇3
and the end-effector’s linear and angular velocities (ẋ, ẏ, θ̇). It plays a critical role in velocity analysis,
singularity identification, and dynamic performance evaluation.

Computation Using Autolev: To derive the Jacobian matrix for the 3RRP mechanism, we utilized
Autolev, a computer algebra system designed for mechanics. In Autolev, the Jacobian was calculated
with the following command:

JACOBIAN =[D(u7,u1), D(u7,u2), D(u7,u3);

D(u8,u1), D(u8,u2), D(u8,u3);

D(u9,u1), D(u9,u2), D(u9,u3)]

where the variables are defined as:

q̇1 = u1, q̇2 = u2, q̇3 = u3,

ṡ1 = u4, ṡ2 = u5, ṡ3 = u6,

ẋ = u7, ẏ = u8, θ̇ = u9.

7

Here, D(·, ·) denotes the partial derivative operation in Autolev, and this command computes the partial
derivatives of the end-effector velocities with respect to the joint velocities, constructing the 3×3 Jacobian
matrix.

Symbolic Representation: Symbolically, this computation corresponds to evaluating:

JACOBIAN =


∂ẋ

∂q̇1

∂ẋ

∂q̇2

∂ẋ

∂q̇3
∂ẏ

∂q̇1

∂ẏ

∂q̇2

∂ẏ

∂q̇3
∂θ̇

∂q̇1

∂θ̇

∂q̇2

∂θ̇

∂q̇3

 ,

which reflects the partial derivatives of the end-effector’s velocity components with respect to each joint
velocity.

Resulting Expression: Due to the complexity of the 3RRP mechanism, the explicit symbolic form
of the Jacobian matrix is extensive. The full expression is provided in Appendix C for reference. This
matrix encapsulates how changes in the joint variables affect the end-effector’s motion.

Interpretation and Significance: The Jacobian matrix is used to:

• Compute the end-effector velocities given a set of joint velocities.

• Analyze singular configurations where the mechanism loses degrees of freedom or gains uncontrolled
movements.

• Inform the design of controllers that manipulate the mechanism in real-time.

The computation of the Jacobian in Autolev streamlines the derivation process and ensures accuracy,
while its lengthy form is documented in Appendix C.

Further details on the Autolev code implementation and derivation of the Jacobian will be discussed
in subsequent sections.

3.1.4 Global Isotropy Index (GII)

The Global Isotropy Index (GII) quantifies the uniformity of a manipulator’s performance across its
workspace. A higher GII indicates more isotropic (uniform) behavior, which is desirable for consistent
performance in all directions.

GII Computation and Visualization: To compute the GII for the 3RRP mechanism, we executed
a MATLAB script (see Appendix D for full code) that:

1. Initialization: Sets up the mechanism parameters (e.g., link length r), default values for system
parameters s1, s2, s3, and defines the range and resolution for each joint variable q1, q2, and q3.

2. Workspace Sampling: Generates a grid of joint angle combinations using specified sampling
resolution. The total number of combinations is determined by the sampling density for each joint.

3. Parallel Computation: Utilizes a parallel loop (parfor) to efficiently compute forward kine-
matics and the Jacobian matrix for each joint configuration. For every sampled configuration, the
script:

• Computes intermediate values necessary for forward kinematics.
• Calculates the end-effector position and orientation (x, y, θ).
• Assembles the Jacobian matrix for the current configuration.
• Performs Singular Value Decomposition (SVD) on the Jacobian to extract the smallest (σmin)

and largest (σmax) singular values.

4. Singular Value Analysis: After processing all valid configurations, the script identifies the
minimum of all computed σmin values and the maximum of all σmax values across the workspace.

8

5. GII Calculation: Calculates the Global Isotropy Index using the formula:

GII = minγ0∈W σmin(J)
maxγ1∈W σmax(J)

and outputs the computed GII value.

6. Workspace Visualization: Recomputes the reachable (x, y) positions for valid configurations
and visualizes the workspace using a scatter plot. Each point in the workspace is colored according
to its corresponding minimum singular value, providing insight into the isotropy distribution across
the workspace.

The MATLAB code that performs these computations and visualizations is provided in detail in
Appendix D.

Figure 4: Workspace visualization colored by the minimum singular value, illustrating the Global Isotropy
Index for the 3RRP mechanism.

3.2 Dynamic Modeling
Dynamic modeling is crucial for predicting and controlling the behavior of robotic mechanisms under
various operating conditions. By formulating the equations of motion, we can accurately simulate and
analyze how the 3RRP mechanism responds to external forces, torques, and motion inputs.

In this section, we derive the dynamic equations of the 3RRP mechanism using two well-known
approaches: Kane’s method and Lagrange’s method. Each approach has its own advantages in terms of
computational efficiency, conceptual clarity, and ease of extension. After presenting both methods, we
compare the resulting equations to highlight differences and similarities in their formulation.

3.2.1 System Setup in Autolev

Before applying Kane’s method to derive the equations of motion, we first establish the 3RRP system
in Autolev with appropriate frames, constraints, and forces. The following sections summarize these key
elements.

Rotations of Frames w.r.t. the Newtonian Frame Autolev uses SIMPROT commands to define
the rotation of each moving frame relative to the inertial (Newtonian) frame N. In this model:

9

• The frames T, S, V rotate about the z-axis of N (labeled as N3) by angles q1, q2, and q3,
respectively.

• The end-effector frame E also rotates about N3 by the angle θ.

• Two additional frames A and B are defined relative to the end-effector frame E by fixed angles of
±60◦.

In Autolev, these rotations are specified with:
SIMPROT (N,T,3,q1)
SIMPROT (N,S,3,q2)
SIMPROT (N,V,3,q3)
SIMPROT (N,E,3, theta)

SIMPROT (E,A ,3 ,60)
SIMPROT (E,B ,3 , -60)

These commands establish the proper orientation relationships among the frames for subsequent kine-
matic and dynamic analyses.

Configuration Constraints To ensure the correct geometric relationships between points on the
mechanism, Autolev uses LOOP vectors and ZeroConfig equations. For the 3RRP mechanism:
LOOP1 > = P_Z_Q > + P_Q_O > + P_O_Z >
LOOP2 > = P_Z_R > + P_R_O > + P_O_Z >
LOOP3 > = P_Z_P > + P_P_O > + P_O_Z >

ZeroConfig [1] = DOT(LOOP1 >,N1 >)
ZeroConfig [2] = DOT(LOOP1 >,N2 >)
ZeroConfig [3] = DOT(LOOP2 >,N1 >)
ZeroConfig [4] = DOT(LOOP2 >,N2 >)
ZeroConfig [5] = DOT(LOOP3 >,N1 >)
ZeroConfig [6] = DOT(LOOP3 >,N2 >)

Here:

• PZQ >, PQO >, POZ > define the closed-loop geometry for one loop of the mechanism, and simi-
larly for the other loops.

• ZeroConfig[1 ...6] impose the conditions that the dot products of these loop vectors with N1
and N2 (the x- and y-directions in the inertial frame) must be zero, effectively closing each loop
in the mechanism at the desired configuration.

Motion Constraints Beyond the static (configurational) constraints, Autolev also forms time deriva-
tives of these loops to establish velocity-level constraints. Each dLOOP vector is computed with respect
to the inertial frame, and then used to define dependent motion equations:
dLOOP1 > = dt(LOOP1 >,N)
dLOOP2 > = dt(LOOP2 >,N)
dLOOP3 > = dt(LOOP3 >,N)

Dependent [1] = dot(dLOOP1 >,N1 >)
Dependent [2] = dot(dLOOP1 >,N2 >)
Dependent [3] = dot(dLOOP2 >,N1 >)
Dependent [4] = dot(dLOOP2 >,N2 >)
Dependent [5] = dot(dLOOP3 >,N1 >)
Dependent [6] = dot(dLOOP3 >,N2 >)

These velocity-level constraints ensure that the loops remain closed as the mechanism moves, dictating
relationships among the joint velocities (e.g., prismatic and revolute joints).

Forces and Torques Autolev allows the definition of external forces (such as gravity and end-effector
loads) and internal actuator torques. In the 3RRP system, we include:
Gravity (-g*N3 >)
Force_Z > = FE1*N1 > + FE2*N2 >
Torque_E > = TZ*N3 >

10

Torque_S > = TS1*S3 >
Torque_T > = TT1*T3 >
Torque_V > = TV1*V3 >

This setup applies:

• A uniform gravitational force −g N3 > on all bodies.

• End-effector forces FE1, FE2 in the N1 and N2 directions.

• Actuator torques TS1, TT1, TV1 about the joints S3, T3, V3, respectively.

• An external torque TZ N3 > on the end-effector frame if needed.

Summary and References By defining the rotations, constraints, and applied forces/torques in this
manner, we establish a comprehensive Autolev model of the 3RRP mechanism. The subsequent derivation
of the equations of motion (using Kane’s method) leverages these definitions to automatically generate
the system’s dynamic equations. In the following sections, we refer back to these frames, constraints,
and force definitions as we derive and analyze the 3RRP mechanism’s motion.

3.2.2 Kane’s Method

Kane’s method is a systematic approach to formulating the equations of motion for mechanical systems.
Unlike the more traditional Lagrangian approach, Kane’s method leverages generalized speeds and partial
velocities to produce a compact set of governing equations. In this subsection, we outline how this method
is applied to the 3RRP mechanism using Autolev.

Overview of Kane’s Method Kane’s method aims to simplify the derivation of equations of motion
by focusing on generalized speeds rather than generalized coordinates alone. It constructs the equations
via the principle ∑

(Factive · vi) +
∑

(Finertial · vi) = 0,

where vi are the partial velocities corresponding to each generalized speed. This approach handles
constraints in a straightforward manner and often yields fewer algebraic steps compared to other formu-
lations.

Kinematical Differential Equations To implement Kane’s method for the 3RRP mechanism, we
define the following generalized speeds {ui} within Autolev. The relevant code snippet is shown below:

% Kinematical differential equations

q1’ = u1 s1’ = u4 x’ = u7
q2’ = u2 s2’ = u5 y’ = u8
q3’ = u3 s3’ = u6 theta ’ = u9

Here, q1, q2, q3 are the revolute joint angles; s1, s2, s3 are prismatic extensions if relevant for the
mechanism; and x, y, θ describe the end-effector’s planar pose. Their time derivatives are mapped to
u1, u2, . . . , u9. By doing so, Autolev treats these generalized speeds directly when forming the system’s
dynamic equations.

Handling Dependent Variables Because the 3RRP mechanism includes closed-loop constraints,
some variables become dependent. Autolev’s Constrain command eliminates dependent generalized
speeds automatically:

Constrain (Dependent [u4 ,u5 ,u6 , u7 ,u8 ,u9])

This enforces the loop closure conditions (both configuration- and velocity-level) described previously,
ensuring that motion constraints are upheld. As a result, Autolev solves for the dependent variables
internally, leaving a minimal set of independent equations for q̇1, q̇2, q̇3.

11

Formation of the Equations of Motion Once the generalized speeds and constraints are defined,
Autolev uses the following commands to assemble the system’s dynamic equations via Kane’s method:

% Equations of motion
Zero = Fr() + FrStar ()
Kane()

In this snippet:

• Fr() represents the generalized active forces (e.g., actuator torques, external forces).

• FrStar() represents the generalized inertial forces (mass/inertia effects).

• Adding them produces a set of algebraic equations (Zero) that must equal zero.

• The Kane() command instructs Autolev to finalize the equations of motion, solving for the accel-
erations of the independent generalized coordinates.

The outcome is a set of ordinary differential equations (ODEs) governing the time evolution of the
3RRP mechanism. If these ODEs are lengthy, they can be relegated to an appendix (e.g., Appendix E)
for clarity.

General Implementation Details Autolev’s computer algebra capabilities automatically compute
partial velocities and assemble all the terms associated with inertial, gravitational, and applied forces.
Key points include:

• Initial Conditions: Joint angles (q1, q2, q3) and prismatic extensions (s1, s2, s3) can be specified,
along with end-effector position (x, y) and orientation θ.

• Constraint Enforcement: Autolev respects the specified constraints, so any motion violating
these constraints is automatically excluded.

• Exporting to Simulation: Commands like

code dynamics () dinamik_yunus .m

generate a MATLAB-compatible file that numerically integrates the resulting ODEs, enabling rapid
simulation and analysis.

Interpretation of the Kane Formulation Kane’s method is particularly well-suited to robotic
applications with constraints, as it streamlines the algebra involved. By designating generalized speeds,
we reduce the system of equations to a more manageable form. Some notable advantages include:

• Direct Constraint Handling: No need to introduce Lagrange multipliers explicitly.

• Compact Equations: Often, fewer symbolic manipulations are required compared to alternative
methods.

• Straightforward Extensions: Nonholonomic or additional constraints can be incorporated con-
sistently.

Summary Through these Autolev commands, we apply Kane’s method to derive the 3RRP mecha-
nism’s equations of motion, respecting the geometric and velocity constraints of the system. The resulting
ODEs form the backbone of our dynamic model, which we will use for simulation, control design, and
further analysis. In the next subsection, we present the Lagrange formulation of the same mechanism to
compare the two approaches and highlight any notable differences.

3.2.3 Lagrangian Formulation in Autolev with Baumgarte Stabilization

In this section, we describe how the Lagrangian method is implemented for the 3RRP mechanism in
Autolev, emphasizing the Euler–Lagrange formulation, the inclusion of constraint forces via Lagrange
multipliers, and the addition of Baumgarte stabilization terms.

12

Forming the Lagrangian The Lagrangian is classically defined as

Lag = T − V,

where T is the total kinetic energy, and V is the potential energy. In our Autolev code:

KE = KE() % Kinetic energy automatically computed by Autolev
PE = 0 % No explicit potential energy term (e.g., gravity modeled as a

force)
Lag = KE - PE % Form the Lagrangian

Autolev’s KE() function computes the total kinetic energy from masses, inertia tensors, and velocities of
all bodies (links and end-effector). Here, PE = 0 means we are not adding extra potential energy terms
(e.g., gravitational potential might be accounted for as a force, or no springs are present).

Euler–Lagrange Terms The Euler–Lagrange equations for each generalized coordinate qi follow the
well-known form:

d

dt

(
∂Lag
∂q̇i

)
− ∂Lag

∂qi
= Qi,

where Qi is the generalized (non-conservative) force corresponding to qi. In Autolev, we compute these
partial derivatives as:

ddLag = [dt(d(Lag ,q1’)); dt(d(Lag ,q2’)); dt(d(Lag ,q3’));
dt(d(Lag ,s1’)); dt(d(Lag ,s2’)); dt(d(Lag ,s3’));
dt(d(Lag ,X’)); dt(d(Lag ,Y’)); dt(d(Lag ,theta ’))]

dLag = [d(Lag ,q1); d(Lag ,q2); d(Lag ,q3);
d(Lag ,s1); d(Lag ,s2); d(Lag ,s3);
d(Lag ,X); d(Lag ,Y); d(Lag ,theta)]

Here:

• ddLag represents d
dt

(
∂Lag
∂q̇i

)
.

• dLag corresponds to ∂Lag
∂qi

.

Each index in these arrays matches one of the nine generalized coordinates
(
q1, q2, q3, s1, s2, s3, X, Y, θ

)
used to describe the mechanism.

Generalized Forces Next, we compute the generalized forces Qi by extracting the virtual work con-
tribution of non-conservative forces and torques:

Work = dot(W_S_N >,Torque_S >) + dot(W_T_N >,Torque_T >) +
dot(W_V_N >,Torque_V >) + dot(V_Z_N >,Force_Z >)

Q = [coef(Work ,q1’); coef(Work ,q2’); coef(Work ,q3’);
coef(Work ,s1’); coef(Work ,s2’); coef(Work ,s3’);
coef(Work ,X’); coef(Work ,Y’); coef(Work ,theta ’)]

- Torque S, Torque T, Torque V are applied torques about the respective frames S3, T3, V3. - Force Z
is an external force on the end-effector, and V Z N> is its velocity in the inertial frame. - The coef()
function associates each generalized velocity (like q′

1) with its corresponding force coefficient, forming
the generalized force vector {Qi}.

Equations of Motion: Unconstrained vs. Constrained Combining these terms yields the uncon-
strained equations of motion:

Zero EoM = ddLag︸ ︷︷ ︸
d
dt

(
∂Lag
∂q̇i

) − dLag︸ ︷︷ ︸
∂Lag
∂qi

− Q︸︷︷︸
Qi

.

This appears in code as:

Zero_EoM = ddLag - dLag - Q

13

However, the 3RRP mechanism has loop-closure constraints. We introduce Lagrange multipliers Λ =
(λ1, λ2, . . . , λ6) to incorporate these constraints into the dynamic equations:

Zero Constrained EoM = Zero EoM +
(
transpose(dZeroConfig)

)
Λ.

In Autolev:
Zero_Constrained_EoM = Zero_EoM + transpose (dZeroConfig)* Lambda

Here, dZeroConfig is the Jacobian matrix of the constraint equations (i.e., partial derivatives of the
loop-closure functions), and multiplying by the Lagrange multipliers Λ enforces those constraints in the
motion-level equations.

Baumgarte Stabilization In many multibody simulations, purely enforcing constraints through mul-
tipliers can lead to numerical drift: small errors in positions or velocities grow over time. Baumgarte
stabilization adds proportional–derivative feedback on the constraint errors to reduce this drift. The
main idea is to replace the strict acceleration-level constraint

C̈(q, q̇, q̈) = 0

with
C̈(q, q̇, q̈) + α Ċ(q, q̇) + β C(q) = 0,

where α, β are user-defined gains. The extra terms α Ċ and β C act like a PD-controller on the constraint
error, stabilizing it at zero.

In the Autolev code, the lines:
first_term = -dtemp*dt(q_vec)
second_term = -2*dt(dZeroConfig)*dt(q_vec)
third_term = -dt(dt(ZeroConfig))
fourth_term = -alpha *(dZeroConfig *dt(q_vec)-third_term)
fifth_term = -beta* ZeroConfig
gamma = first_term + second_term + third_term + fourth_term + fifth_term
extra_term = transpose (dZeroConfig)* Lambda

correspond to computing Ċ and C̈ for the loop-closure constraints C(q) = 0 (and their time derivatives),
then adding the Baumgarte correction terms. Specifically,

• α multiplies the velocity-level constraint error (Ċ).

• β multiplies the position-level constraint error (C).

• The code modifies the final equations of motion to include these corrections, preventing numerical
drift of the constraints.

Solving for Accelerations and Multipliers Finally, Autolev solves the combined set of differential-
algebraic equations (DAEs) for the second derivatives of the generalized coordinates and for the Lagrange
multipliers:
solve(eqn , [dt(dt(q_vec)); Lambda])

This procedure yields the accelerations (q′′
1 , q′′

2 , . . . , θ′′) that respect both dynamics and constraints (in-
cluding Baumgarte stabilization), as well as the multipliers λi that represent constraint forces.

Summary Through these steps, we apply the Euler–Lagrange formulation to the 3RRP mechanism,
capture non-conservative torques/forces as generalized forces, and explicitly handle loop-closure con-
straints with Lagrange multipliers. Baumgarte stabilization reduces constraint violation over time by
adding PD-like terms on the constraint error. The final outcome is a set of numerically robust equations
of motion suitable for simulation and analysis in downstream environments (e.g., MATLAB/Simulink).

3.2.4 Method Comparison

Having derived the equations of motion for the 3RRP mechanism using both Kane’s and Lagrange’s
methods, we now compare the two approaches in terms of derivation complexity, computational effi-
ciency, and interpretability. For completeness, the Autolev codes used for each method are provided in
Appendix E.

14

1) Derivation Complexity

• Equation Length and Effort: In our experience, Kane’s method yielded more compact interme-
diate expressions, especially when handling velocity-level constraints. In contrast, the Lagrangian
approach required explicit introduction of Lagrange multipliers for loop-closure constraints, in-
creasing the symbolic complexity.

• Handling of Constraints: Kane’s method allows direct enforcement of constraints via partial
velocities, whereas Lagrange’s method requires additional multipliers. For a closed-loop mechanism
like 3RRP, the extra step of formulating and stabilizing constraint equations via Baumgarte was
somewhat more involved in the Lagrangian approach.

2) Computational Efficiency

• Symbolic Computation: Both methods were implemented in Autolev, which automatically per-
forms partial derivatives and matrix assembly. Kane’s method tended to produce slightly shorter
symbolic expressions, and it processed faster in some tests, though the difference was not pro-
hibitive.

• Numerical Integration: Simulations of both formulations, after exporting to MATLAB, showed
comparable run times. However, the Lagrange-based code required careful tuning of Baumgarte
gains to prevent numerical drift. The simpler constraint enforcement in Kane’s method reduced
the need for extensive tuning.

3) Interpretability and Physical Insight

• Energy-Based vs. Force-Based Views: Lagrange’s method directly relates kinetic and poten-
tial energies, offering clear insights when energy terms are a focal point (e.g., adding springs or
analyzing energy conservation). Kane’s method, by contrast, is often more direct for force/torque-
driven analyses and can simplify constraint modeling.

• Equation Structure: The final Lagrangian equations required explicit constraint terms and mul-
tipliers. Kane’s formulation consolidated these elements through partial velocities and effectively
embedded the constraint relations in the generalized force components.

4) Practical Considerations

• Ease of Implementation: Kane’s method and Lagrange’s method each have dedicated Autolev
functions. In practice, using Kane’s method felt more streamlined for the 3RRP’s multiple closed
loops, since the tool automatically resolved dependent speeds. On the other hand, the Lagrangian
approach is straightforward to interpret physically, but more tedious to manage constraints.

• Scalability: Both methods can scale to higher DoFs or 3D systems, but the added constraints
could become cumbersome in Lagrange’s method. Kane’s method remains appealing for larger
systems with many loop closures, given its partial velocity framework.

• Controller Design: For basic PD controllers, either formulation suffices. However, force/torque-
based control laws might be slightly more direct with Kane’s equations, whereas potential/energy-
based controllers (e.g., passivity-based) may be more transparent in the Lagrangian formulation.

5) Summary of Key Findings

• Advantages of Kane’s Method:

– Naturally incorporates constraints using partial velocities.
– Often leads to more compact symbolic expressions.
– Potentially simpler for force/torque-focused analysis.

• Advantages of Lagrange’s Method:

– Directly tied to energy principles and potential functions.

15

– Well-known standard procedure with straightforward interpretation.
– Useful for systems requiring explicit energy-based analyses.

Overall, Kane’s method can be more efficient for mechanisms with multiple loops, while La-
grange’s method offers a clear energy-based interpretation. In practice, the choice may depend on
the specific application and whether energy or force analyses are the primary concern. For this 3RRP
mechanism, both methods yield valid results; the preference for one over the other might hinge on the
user’s familiarity with energy-based vs. partial-velocity formulations.

3.2.5 Simulation and Validation Using Kane’s Dynamic Code

This section presents the simulation results obtained from the 3RRP mechanism’s dynamic equations,
which were derived using Kane’s method. We focus on verifying the model’s response under small force
and torque disturbances applied to the end-effector.

Simulation Setup

• Environment and Code: The dynamic code generated by Autolev (Kane’s method) was imple-
mented in MATLAB. For details on the Autolev script and code structure, refer to Appendix E.

• Solver and Parameters: We used MATLAB’s ode45 solver with a simulation duration of
5 seconds and a time step size of 0.001 seconds.

• Initial Conditions: Unless otherwise stated, the 3RRP joints and end-effector start in a nominal
configuration with zero velocities.

• Disturbances: We applied a small 0.001 N or 0.001 N·m torque to the end-effector in specific
directions to evaluate the system’s dynamic response.

Implementation of Kane’s Dynamics Kane’s method handles loop-closure constraints through
partial velocities, reducing the complexity of enforcing constraints explicitly. The Autolev-generated
code automatically computes the system accelerations based on the generalized speeds, masses, inertias,
and any applied forces or torques.

Simulation Results and Discussion We carried out four distinct simulations, each focusing on a
different end-effector loading scenario. The plots below illustrate how the position and orientation of the
end-effector evolve over time in response to the applied disturbances.

1. Small Force Along −X Direction A force of 0.001 N is applied along the negative x-axis of
the mechanism’s base frame. Figure 5 shows the end-effector position (x, y) and orientation θ over
time.

16

Figure 5: End-effector response under a 0.001 N force along −X.

The end-effector moves slightly in the negative x-direction before stabilizing, indicating the mech-
anism’s relatively stiff response.

2. Small Force Along −Y Direction A force of 0.001 N is applied along the negative y-axis.
Figure 6 depicts the resulting trajectory.

Figure 6: End-effector response under a 0.001 N force along −Y .

Similar to the −X case, the end-effector shifts slightly in the negative y-direction and settles to a
nearby equilibrium, demonstrating consistent dynamic behavior.

3. Small Force Along Both −X and −Y Directions Next, we applied a combined force of 0.001 N
simultaneously along the −X and −Y axes. Figure 7 shows the end-effector’s motion.

17

Figure 7: End-effector response under a 0.001 N force along −X and −Y .

The mechanism responds with a diagonal shift in the −X, −Y quadrant. The orientation θ shows
minor deviations, reflecting small coupled effects on the end-effector’s rotation.

4. Small Torque Along N3 Direction Finally, we applied a torque of 0.001 N·m around the N3
axis (i.e., negative z-axis of the inertial frame). Figure 8 captures the end-effector orientation
changes.

Figure 8: End-effector response under a 0.001 N·m torque around N3.

In this scenario, the end-effector rotates slightly while maintaining its planar constraints. The
small magnitude of the torque produces only a gentle angular displacement over the simulation
duration.

Validation and Observations

18

• Constraint Satisfaction: Throughout all four simulations, the closed-loop constraints of the
3RRP mechanism remain satisfied, confirming the effectiveness of Kane’s method in automatically
handling dependent velocities.

• Small Perturbation Behavior: The low forces and torques produce modest displacements,
demonstrating linear-like responses around the nominal configuration. This small-signal response
is a valuable baseline for future control design.

• Numerical Stability: No numerical instabilities or constraint drift were observed, indicating that
the code correctly integrates the equations of motion and respects loop closures.

• Comparison with Physical Expectation: The end-effector displacements and orientations
align well with intuitive expectations of how a planar mechanism should react to small external
loads.

Summary Using the Kane-derived dynamic code, we simulated the 3RRP mechanism’s response to
small forces and torques. The results confirm that the code accurately captures the mechanism’s behavior,
maintaining constraints and producing realistic motions. These validation efforts provide confidence in
the correctness of the derived equations and pave the way for further analysis, such as controller design
or path planning, where the mechanism’s dynamic behavior under external perturbations is critical.

3.2.6 Kinematic Simulation in Simulink

Beyond the dynamic simulations, we also implemented and tested the 3RRP mechanism’s forward and
inverse kinematics in Simulink at both the configuration and motion levels. These simulations validate
the correctness of our symbolic kinematic equations and the Jacobian-based velocity mapping.

Configuration-Level Kinematics Figure 9 showcases two Simulink blocks: the configuration-level
forward kinematics block and the configuration-level inverse kinematics block.

• Forward Kinematics Block (Configuration Level): Takes the joint angles (q1, q2, q3) as inputs
and outputs the end-effector’s configuration (x, y, θ) based on the derived closed-form equations.

• Inverse Kinematics Block (Configuration Level): Accepts the end-effector’s desired config-
uration (x, y, θ) and computes the required joint angles to achieve that pose.

Figure 9: Configuration-level forward and inverse kinematics blocks in Simulink.

Motion-Level Kinematics Similarly, Figure 10 shows the motion-level forward kinematics block and
the motion-level inverse kinematics block.

• Forward Kinematics Block (Motion Level): Accepts joint trajectories or time-varying joint
angles and outputs the corresponding end-effector trajectory over time.

• Inverse Kinematics Block (Motion Level): Computes the joint trajectories necessary to follow
a specified end-effector trajectory (x(t), y(t), θ(t)).

19

Figure 10: Motion-level forward and inverse kinematics blocks in Simulink.

Jacobian and Jacobian Transpose Blocks To facilitate velocity-level analyses and manipulator
control strategies, we also built dedicated blocks for the Jacobian and its transpose, as displayed in
Figure 11. These blocks:

• Compute the Jacobian matrix J(q) given the current joint angles q.

• Output J⊤(q) for tasks such as Jacobian transpose-based control or force mapping.

Figure 11: Jacobian and Jacobian transpose blocks in Simulink.

Verification of Kinematic Accuracy As a final check, we connected the forward and inverse kine-
matics blocks back-to-back and monitored the resulting joint angles. Figure 12 shows a sample output
plot comparing the input joint angles to the angles recovered after passing through the forward → inverse
pipeline.

• Result: The input angles and the output angles match closely, validating the correctness of the
kinematic equations and their Simulink implementation.

• Implication: This ensures that for any desired (x, y, θ) within the reachable workspace, the inverse
kinematics block yields the correct joint configuration, which the forward kinematics block can then
accurately map back to the same (x, y, θ).

20

Figure 12: Input vs. output joint angles when forward and inverse kinematics blocks are connected.

Conclusions on Kinematic Simulation The Simulink models confirm that the symbolic kinematic
equations for both configuration and motion levels are accurate. By verifying that the input and output
angles coincide in a forward-inverse loop, we eliminate potential algebraic or sign errors. Moreover, the
separate Jacobian blocks enable velocity-level and control-related analyses, paving the way for advanced
manipulator control schemes in future work.

4 Discussion
4.1 Overview of Key Findings
In the preceding sections, we thoroughly examined the 3RRP mechanism by deriving and validating its
kinematic and dynamic models. The kinematic study included closed-form forward and inverse solutions,
workspace determination, and evaluation of the Jacobian matrix along with the Global Isotropy Index
(GII). On the dynamic side, both Kane’s and Lagrange’s methods were employed, and their respective
formulations were tested via simulation under small external forces and torques. This section consolidates
these results to highlight their broader significance and practical implications.

4.2 Analysis of Kinematic Results
Forward and Inverse Kinematics Our forward and inverse kinematics analyses established a ro-
bust mapping between the joint variables (q1, q2, q3) and the end-effector pose (x, y, θ). Notably, the
verification in Simulink—where forward and inverse kinematic blocks were connected—confirmed the
mathematical consistency of these solutions: input joint angles re-emerged intact, reinforcing the cor-
rectness of the symbolic derivations. Although certain configurations could theoretically yield multiple
inverse solutions, the numerical checks indicated reliable uniqueness for typical workspace configurations.

Workspace and Jacobian Insights Workspace visualization revealed a circular boundary under
symmetrical link assumptions, offering clear insight into feasible end-effector positions and orientations.
By scrutinizing the kinematic Jacobian across this workspace, we identified how joint velocities map
onto end-effector velocities and localized potential singularities. Incorporating the Global Isotropy Index
(GII) highlighted where the mechanism operates most uniformly, cautioning against working in regions
with poor manipulability. These findings directly inform strategies for path planning and operation near
lower-singularity areas.

21

4.3 Interpretation of Dynamic Modeling Outcomes
Kane’s vs. Lagrange’s Equations Both Kane’s and Lagrange’s formulations successfully captured
the 3RRP mechanism’s dynamic behavior. However, Kane’s method offered more compact expressions,
leveraging partial velocities to incorporate loop-closure constraints seamlessly. In contrast, the La-
grangian framework provided an intuitive energy-based interpretation but demanded explicit constraint
handling via Lagrange multipliers and Baumgarte stabilization. These trade-offs emphasize that the
choice of method may hinge on factors such as system complexity, desired symbolic simplicity, and the
relevance of energy concepts to subsequent control design.

Simulation Observations Simulations under small forces and torques validated the system’s stable
and constraint-respecting motion. The prismatic and revolute joints collaborated smoothly, indicating
that neither approach to dynamic modeling introduced numerical instabilities or constraint drift under
moderate loading. The minor deviations observed can be traced to typical integration tolerances or
subtle parameter assumptions. Overall, the 3RRP mechanism demonstrated predictable, controllable
responses that underscore its aptitude for planar tasks requiring moderate precision.

4.4 Comparisons and Correlations
Kinematic–Dynamic Consistency A key outcome was the alignment of dynamic simulation results
with the kinematic predictions. End-effector trajectories stayed within the computed workspace bounds,
and velocities agreed with expected joint-space mappings. Inconsistencies, where present, were nominal
and stemmed from solver thresholds rather than from conceptual flaws in the models.

Potential Experimental Benchmarks Although direct experimental validation lies beyond the cur-
rent scope, the trends discovered align with established literature on planar parallel manipulators. Minor
numerical artifacts, such as marginal drift in near-singular regions, mirror the behavior reported when
friction, damping, or measurement noise are minimal. These parallels suggest a realistic pathway for
future hardware-based experiments to confirm and refine the theoretical and simulated results.

4.5 Practical Implications for 3RRP Mechanism
Design and Control Considerations The synergy between large isotropy regions and straightfor-
ward dynamic responses indicates that the 3RRP mechanism is prime for applications such as assembly
tasks, pick-and-place operations, and any planar motion tasks needing precision and moderate payload
handling. Controller tuning may focus on Jacobian-based strategies, adjusting control gains in areas
where the GII drops to ensure robust tracking near singularities.

Real-World Applications Industrial operations—including packaging, inspection, and PCB assem-
bly—benefit from planar parallel manipulators with high dexterity and stiffness. The 3RRP mecha-
nism’s combination of revolute and prismatic joints delivers adaptable work envelopes with relatively
simple forward/inverse calculations. This simplicity, along with the validated dynamic models, facili-
tates streamlined hardware integration, making it feasible to deploy basic trajectory-following controllers
and potentially incorporate advanced real-time strategies like Jacobian transpose or hybrid force-motion
control.

4.6 Reflections and Future Directions
The collective results—covering comprehensive kinematic derivations, isotropy assessments, and vali-
dated dynamic models—form a robust analytical and simulation-based platform for the 3RRP mech-
anism. As technology advances and novel robotic applications arise, the methods presented here can
be extended by incorporating realistic joint friction, elastic elements, or more sophisticated control ap-
proaches, enabling the 3RRP mechanism to meet higher-precision or higher-speed demands.

4.7 Summary of the Discussion
Overall, the investigation shows that a well-calibrated 3RRP mechanism can achieve accurate planar
motion and sustain moderate external disturbances without undermining its constraint structure or
workspace reach. By bridging rigorous symbolic derivations (for both kinematics and dynamics) with

22

simulation verifications, this work establishes a strong technical foundation for future refinements in
design, control, and performance optimization.

5 Conclusion
This project provided an in-depth exploration of the 3RRP mechanism’s kinematic and dynamic perfor-
mance. The following key achievements highlight its contributions and potential impact:

• Robust Kinematic Framework: Closed-form forward and inverse kinematics were verified
through Simulink simulations, ensuring a precise mapping between joint variables and end-effector
pose. The Jacobian and Global Isotropy Index (GII) further quantified the mechanism’s local
dexterity and guided the identification of near-singular regions.

• Workspace Characterization: Numerical methods established the largest symmetric workspace
for the 3RRP, demonstrating the system’s ability to access a wide planar area with full rotational
freedom. These findings assist in planning maneuvers that exploit optimal regions of manipulability.

• Dynamic Modeling via Kane’s and Lagrange’s Methods: Equations of motion were de-
rived using both approaches, offering insights into the trade-offs between compactness (Kane’s)
and energy-focused formulations (Lagrange’s). The inclusion of Baumgarte stabilization in the
Lagrangian framework emphasized best practices for constraint-enforced simulations.

• Simulation and Verification: MATLAB/Simulink implementations validated both the kine-
matic and dynamic models, revealing stable end-effector responses under small perturbations.
Joint velocities remained consistent with theoretical predictions, supporting real-time feasibility
for moderate tasks.

Significance and Limitations These results affirm that the 3RRP mechanism is well-suited for pla-
nar robotic tasks—ranging from precise assembly to general pick-and-place—thanks to its closed-form
kinematics, relatively high isotropy, and stable dynamic responses. While frictionless and rigid-link as-
sumptions simplify the analysis, they limit real-world applicability. Introducing friction, compliance, or
high-speed regimes would require more advanced models and possibly higher-end actuators.

Recommendations for Future Work Building on this foundation, several avenues can extend the
scope and deepen the realism of the 3RRP study:

• Controller Design and Optimization: Implement advanced control laws (e.g., adaptive, robust,
or model-predictive) leveraging the validated equations of motion and Jacobian-based velocity
mappings.

• Parametric Sensitivity and Optimization: Explore variations in link lengths, masses, or
prismatic stroke limits to optimize the workspace–dexterity trade-off.

• Experimental Validation: Construct a physical prototype or testbed to compare measured data
against simulations, informing friction compensation or real-time control tuning.

• Complex System Integration: Combine the 3RRP with other planar or spatial mechanisms for
multi-axis tasks, applying the same systematic derivation and simulation approach developed here.

Final Remarks By presenting unified kinematic and dynamic analyses, supported by rigorous sym-
bolic derivations and numerical validations, this report underscores the 3RRP mechanism’s potential
in achieving precise, robust planar motion. The demonstrated synergy among theoretical modeling,
software-based verification, and practical design considerations offers a solid springboard for future re-
search and implementation, bridging academic rigor with industrial relevance.

Bibliography

References

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Appendix B: MATLAB Code for Workspace Calculation
The following MATLAB code was implemented to compute the largest symmetric workspace of the 3RRP
mechanism. The function utilizes parallel loops for efficient computation of all reachable end-effector
positions and visualizes the resulting workspace.

function visualize3RRPWorkspaceParallel()
% Parameters
L = 200; % Length of each link in mm
r = L; % Symmetrical link length assumption
num_points = 100; % Number of points for q1, q2, q3

% Range of joint angles (in radians)
q1_values = linspace(0, 2*pi, num_points);
q2_values = linspace(0, 2*pi, num_points);
q3_values = linspace(0, 2*pi, num_points);

% Initialize storage for workspace positions
all_x = [];
all_y = [];

% Parallel computation using nested parfor loops
parfor i = 1:length(q1_values)

local_x = []; % Local storage for this worker
local_y = [];
for j = 1:length(q2_values)

for k = 1:length(q3_values)
q1 = q1_values(i);
q2 = q2_values(j);
q3 = q3_values(k);

% Compute forward kinematics
[x, y, ˜] = calculateEndEffectorPosition3RRP(q1, q2, q3, r);

% Store results locally
local_x = [local_x, x];
local_y = [local_y, y];

end
end
% Append local results to global arrays
all_x = [all_x, local_x];
all_y = [all_y, local_y];

end

% Plot the workspace
figure;
plot(all_x, all_y, ’b.’, ’MarkerSize’, 5);
xlabel(’X position (mm)’);
ylabel(’Y position (mm)’);
title(’Largest Symmetric Workspace of 3RRP Mechanism (Nested parfor)’);
axis equal;

end

function [x, y, theta] = calculateEndEffectorPosition3RRP(q1, q2, q3, r)
% Forward kinematics for the 3RRP mechanism
% Input: q1, q2, q3 (joint angles in radians), r (link length)
% Output: x, y (end effector position), theta (end effector orientation)

% Calculate intermediate variables

40

c11 = r * cos(q1); c12 = r * sin(q1);
c21 = r * cos(q2); c22 = r * sin(q2);
c31 = r * cos(q3); c32 = r * sin(q3);

K = c12 + c32 + sqrt(3)*c31 - 2*c22 - sqrt(3)*c11;
L = c11 + c31 + sqrt(3)*c12 - 2*c21 - sqrt(3)*c32;
M = L * (L - sqrt(3)*K) * c12 - L * (K + sqrt(3)*L) * c11 - ...

(L - sqrt(3)*K) * (L*c22 - K*c21);

% Forward kinematics equations
x = -M / ((Kˆ2 + Lˆ2) * sqrt(3));
y = c22 - (K/L) * c21 - (K * M) / (L * sqrt(3) * (Kˆ2 + Lˆ2));
theta = atan2(K, L);

end

41

Appendix C: Detailed Jacobian Matrix
This appendix provides the detailed symbolic expression of the kinematic Jacobian matrix for the 3RRP
mechanism. The Jacobian matrix relates the joint velocities (q̇1, q̇2, q̇3) to the end-effector’s velocities
(ẋ, ẏ, θ̇).

Listing 1: Detailed Symbolic Jacobian Matrix for 3RRP Mechanism
1 JACOBIAN [1 ,1] = -0.5773503* L*(SIN(q1)*(SIN(theta) +1.732051* COS(theta))
2 - COS(q1) *(1.732051* SIN(theta)-COS(theta)))
3 *(2* s2*(COS(theta) +1.732051* SIN(theta))
4 + s3*COS(theta)*((SIN(theta) -1.732051* COS(theta))ˆ2
5 + (COS(theta) +1.732051* SIN(theta))ˆ2))
6 /(s3 *((SIN(theta) -1.732051* COS(theta))ˆ2
7 + (COS(theta) +1.732051* SIN(theta))ˆ2)
8 + s1 *((SIN(theta) +1.732051* COS(theta))ˆ2
9 + (1.732051* SIN(theta)-COS(theta))ˆ2)

10 + 1.154701* s2 *((SIN(theta) +1.732051* COS(theta))
11 *(COS(theta) +1.732051* SIN(theta))
12 + (SIN(theta) -1.732051* COS(theta))
13 *(1.732051* SIN(theta)-COS(theta))))
14

15 JACOBIAN [1 ,2] = -0.5773503* L*COS(q2 -theta)
16 *(s3*(SIN(theta) -1.732051* COS(theta))ˆ2
17 *(1.732051* SIN(theta)-COS(theta))
18 + (COS(theta) +1.732051* SIN(theta))
19 *(s1*(SIN(theta) +1.732051* COS(theta))ˆ2
20 + s1 *(1.732051* SIN(theta)-COS(theta))ˆ2
21 + s3*(COS(theta) +1.732051* SIN(theta))
22 *(1.732051* SIN(theta)-COS(theta))))
23 /(s3 *((SIN(theta) -1.732051* COS(theta))ˆ2
24 + (COS(theta) +1.732051* SIN(theta))ˆ2)
25 + s1 *((SIN(theta) +1.732051* COS(theta))ˆ2
26 + (1.732051* SIN(theta)-COS(theta))ˆ2)
27 + 1.154701* s2 *((SIN(theta) +1.732051* COS(theta))
28 *(COS(theta) +1.732051* SIN(theta))
29 + (SIN(theta) -1.732051* COS(theta))
30 *(1.732051* SIN(theta)-COS(theta))))
31

32 JACOBIAN [1 ,3] = -0.5773503* L*(SIN(q3)*(SIN(theta) -1.732051* COS(theta))
33 + COS(q3)*(COS(theta) +1.732051* SIN(theta)))
34 *(2* s2 *(1.732051* SIN(theta)-COS(theta))
35 - s1*COS(theta)*((SIN(theta) +1.732051* COS(theta))ˆ2
36 + (1.732051* SIN(theta)-COS(theta))ˆ2))
37 /(s3 *((SIN(theta) -1.732051* COS(theta))ˆ2
38 + (COS(theta) +1.732051* SIN(theta))ˆ2)
39 + s1 *((SIN(theta) +1.732051* COS(theta))ˆ2
40 + (1.732051* SIN(theta)-COS(theta))ˆ2)
41 + 1.154701* s2 *((SIN(theta) +1.732051* COS(theta))
42 *(COS(theta) +1.732051* SIN(theta))
43 + (SIN(theta) -1.732051* COS(theta))
44 *(1.732051* SIN(theta)-COS(theta))))
45

46 JACOBIAN [2 ,1] = -0.5773503* L*(SIN(q1)*(SIN(theta) +1.732051* COS(theta))
47 - COS(q1) *(1.732051* SIN(theta)-COS(theta)))
48 *(2* s2*(SIN(theta) -1.732051* COS(theta))
49 + s3*SIN(theta)*((SIN(theta) -1.732051* COS(theta))ˆ2
50 + (COS(theta) +1.732051* SIN(theta))ˆ2))
51 /(s3 *((SIN(theta) -1.732051* COS(theta))ˆ2
52 + (COS(theta) +1.732051* SIN(theta))ˆ2)
53 + s1 *((SIN(theta) +1.732051* COS(theta))ˆ2
54 + (1.732051* SIN(theta)-COS(theta))ˆ2)
55 + 1.154701* s2 *((SIN(theta) +1.732051* COS(theta))
56 *(COS(theta) +1.732051* SIN(theta))

42

57 + (SIN(theta) -1.732051* COS(theta))
58 *(1.732051* SIN(theta)-COS(theta))))
59

60 JACOBIAN [2 ,2] = 0.5773503* L*COS(q2 -theta)
61 *(s3*(SIN(theta) +1.732051* COS(theta))*(SIN(theta) -1.732051* COS(theta))ˆ2
62 + s3*(SIN(theta) +1.732051* COS(theta))*(COS(theta) +1.732051* SIN(theta))ˆ2
63 - s1*(SIN(theta) -1.732051* COS(theta))
64 *((SIN(theta) +1.732051* COS(theta))ˆ2
65 + (1.732051* SIN(theta)-COS(theta))ˆ2))
66 /(s3 *((SIN(theta) -1.732051* COS(theta))ˆ2
67 + (COS(theta) +1.732051* SIN(theta))ˆ2)
68 + s1 *((SIN(theta) +1.732051* COS(theta))ˆ2
69 + (1.732051* SIN(theta)-COS(theta))ˆ2)
70 + 1.154701* s2 *((SIN(theta) +1.732051* COS(theta))
71 *(COS(theta) +1.732051* SIN(theta))
72 + (SIN(theta) -1.732051* COS(theta))
73 *(1.732051* SIN(theta)-COS(theta))))
74

75 JACOBIAN [3 ,3] = 2*L*(SIN(q3)*(SIN(theta) -1.732051* COS(theta))
76 + COS(q3)*(COS(theta) +1.732051* SIN(theta)))
77 /(s3 *((SIN(theta) -1.732051* COS(theta))ˆ2
78 + (COS(theta) +1.732051* SIN(theta))ˆ2)
79 + s1 *((SIN(theta) +1.732051* COS(theta))ˆ2
80 + (1.732051* SIN(theta)-COS(theta))ˆ2)
81 + 1.154701* s2 *((SIN(theta) +1.732051* COS(theta))
82 *(COS(theta) +1.732051* SIN(theta))
83 + (SIN(theta) -1.732051* COS(theta))
84 *(1.732051* SIN(theta)-COS(theta))))

43

Appendix D: MATLAB Code for Global Isotropy Index (GII)
This appendix contains the MATLAB implementation used to compute and visualize the Global Isotropy
Index (GII) for the 3RRP mechanism. The script calculates the GII by analyzing the singular values of
the Jacobian matrix across the workspace and visualizes the isotropy distribution.

Listing 2: MATLAB Code for GII Calculation and Visualization
1 %% ------------------------- Initialization ----------------------------
2 clear; clc;
3 % Define numerical values for constants
4 r = 300; % Example value; replace with actual value as needed
5

6 % Assign default positive values to s1 , s2 , s3
7 % These can be adjusted based on system requirements
8 s1 = 1.0;
9 s2 = 1.0;

10 s3 = 1.0;
11

12 % Define joint variable ranges (in radians)
13 q1_min = 0; q1_max = 2*pi;
14 q2_min = 0; q2_max = 2*pi;
15 q3_min = 0; q3_max = 2*pi;
16

17 % Define number of samples per joint
18 num_samples = 60; % Adjust for desired resolution and computational resources
19

20 % Generate joint variable samples
21 q1_samples = linspace (q1_min , q1_max , num_samples);
22 q2_samples = linspace (q2_min , q2_max , num_samples);
23 q3_samples = linspace (q3_min , q3_max , num_samples);
24

25 % Total number of joint combinations
26 total_combinations = num_samples ˆ3;
27

28 % Preallocate arrays to store singular values
29 sigma_min_vals = zeros(total_combinations , 1);
30 sigma_max_vals = zeros(total_combinations , 1);
31

32 % Initialize tracking variables
33 min_sigma_min = Inf;
34 max_sigma_max = -Inf;
35

36 % Define constants for precision
37 sqrt3 = 1.7320508075688772; % Approximation of sqrt (3)
38 inv_sqrt3 = 0.5773502691896257; % 1/ sqrt (3)
39 twice_inv_sqrt3 = 1.1547005383792517; % 2/ sqrt (3)
40

41 %% --------------------- Parallel Computation --------------------------
42

43 % Create a parallel pool if not already open
44 if isempty (gcp(’nocreate ’))
45 parpool ; % Uses default settings ; adjust ’parpool ’ parameters as needed
46 end
47

48 % Start parallel loop
49 parfor idx = 1: total_combinations
50 % Convert linear index to subscript indices
51 [i, j, k] = ind2sub ([num_samples , num_samples , num_samples], idx);
52

53 % Retrieve joint angles
54 q1 = q1_samples (i);
55 q2 = q2_samples (j);
56 q3 = q3_samples (k);

44

57

58 %% -------------------- Forward Kinematics ------------------------
59

60 % Compute intermediate cosine and sine values
61 c11 = r * cos(q1);
62 c12 = r * sin(q1);
63 c21 = r * cos(q2);
64 c22 = r * sin(q2);
65 c31 = r * cos(q3);
66 c32 = r * sin(q3);
67

68 % Define K, L, and M based on forward kinematics
69 K = c12 + c32 + sqrt3 * c31 - 2 * c22 - sqrt3 * c11;
70 L = c11 + c31 + sqrt3 * c12 - 2 * c21 - sqrt3 * c32;
71 M = L * (L - sqrt3 * K) * c12 - L * (K + sqrt3 * L) * c11 - (L - sqrt3 *

K) * (L * c22 - K * c21);
72

73 % Calculate x, y, and theta
74 denom_xy = sqrt3 * (Kˆ2 + Lˆ2);
75 if denom_xy == 0
76 % Avoid division by zero; assign NaN and continue
77 sigma_min_vals (idx) = NaN;
78 sigma_max_vals (idx) = NaN;
79 continue ;
80 end
81 x = -M / denom_xy ;
82 y = c22 - (K / L) * c21 - (K * M) / (sqrt3 * L * (Kˆ2 + Lˆ2));
83 theta = atan2(K, L);
84

85 %% ---------------------- Jacobian Calculation ----------------------
86

87 % Precompute sine and cosine of theta
88 sin_theta = sin(theta);
89 cos_theta = cos(theta);
90

91 % Precompute common terms
92 term1 = sin_theta + sqrt3 * cos_theta ;
93 term2 = 1.732051 * sin_theta - cos_theta ;
94 term3 = sin_theta - sqrt3 * cos_theta ;
95 term4 = cos_theta + sqrt3 * sin_theta ;
96

97 % Compute denominator for all Jacobian entries
98 denominator = s3 * (term3 ˆ2 + term4 ˆ2) + ...
99 s1 * ((sin_theta + sqrt3 * cos_theta)ˆ2 + (1.732051 *

sin_theta - cos_theta)ˆ2) + ...
100 twice_inv_sqrt3 * s2 * ((term1 * (cos_theta + sqrt3 *

sin_theta)) + (term3 * (1.732051 * sin_theta -
cos_theta)));

101

102 % Check for zero denominator to avoid division by zero
103 if denominator == 0
104 sigma_min_vals (idx) = NaN;
105 sigma_max_vals (idx) = NaN;
106 continue ;
107 end
108

109 %% Compute Jacobian Entries
110

111 % J(1 ,1)
112 numerator_J11 = -inv_sqrt3 * L * (sin(q1) * term1 - cos(q1) * (1.732051 *

sin_theta - cos_theta)) * ...
113 (2 * s2 * (cos_theta + sqrt3 * sin_theta) + s3 *

cos_theta * (term3 ˆ2 + term4 ˆ2));

45

114 J11 = numerator_J11 / denominator ;
115

116 % J(1 ,2)
117 numerator_J12 = -inv_sqrt3 * L * cos(q2 - theta) * ...
118 (s3 * term3 ˆ2 * (1.732051 * sin_theta - cos_theta) + ...
119 (cos_theta + sqrt3 * sin_theta) * (s1 * (term1)ˆ2 + s1 *

(1.732051 * sin_theta - cos_theta)ˆ2 + s3 * term4 *
(1.732051 * sin_theta - cos_theta)));

120 J12 = numerator_J12 / denominator ;
121

122 % J(1 ,3)
123 numerator_J13 = -inv_sqrt3 * L * (sin(q3) * term3 + cos(q3) * term4) * ...
124 (2 * s2 * (1.732051 * sin_theta - cos_theta) - s1 *

cos_theta * (term1 ˆ2 + (1.732051 * sin_theta -
cos_theta)ˆ2));

125 J13 = numerator_J13 / denominator ;
126

127 % J(2 ,1)
128 numerator_J21 = -inv_sqrt3 * L * (sin(q1) * term1 - cos(q1) * (1.732051 *

sin_theta - cos_theta)) * ...
129 (2 * s2 * term3 + s3 * sin_theta * (term3 ˆ2 + term4 ˆ2));
130 J21 = numerator_J21 / denominator ;
131

132 % J(2 ,2)
133 numerator_J22 = inv_sqrt3 * L * cos(q2 - theta) * ...
134 (s3 * term1 * term3 ˆ2 + s3 * term1 * term4 ˆ2 - s1 * term3

* (term1 ˆ2 + (1.732051 * sin_theta - cos_theta)ˆ2));
135 J22 = numerator_J22 / denominator ;
136

137 % J(2 ,3)
138 numerator_J23 = inv_sqrt3 * L * (sin(q3) * term3 + cos(q3) * term4) * ...
139 (2 * s2 * (sin_theta + sqrt3 * cos_theta) + s1 *

sin_theta * (term1 ˆ2 + (1.732051 * sin_theta -
cos_theta)ˆ2));

140 J23 = numerator_J23 / denominator ;
141

142 % J(3 ,1)
143 numerator_J31 = 2 * L * (sin(q1) * term1 - cos(q1) * (1.732051 * sin_theta

- cos_theta));
144 J31 = numerator_J31 / denominator ;
145

146 % J(3 ,2)
147 numerator_J32 = -twice_inv_sqrt3 * L * cos(q2 - theta) * ...
148 (term1 * (cos_theta + sqrt3 * sin_theta) + term3 *

(1.732051 * sin_theta - cos_theta));
149 J32 = numerator_J32 / denominator ;
150

151 % J(3 ,3)
152 numerator_J33 = 2 * L * (sin(q3) * term3 + cos(q3) * term4);
153 J33 = numerator_J33 / denominator ;
154

155 % Assemble the Jacobian matrix
156 J_num = [J11 , J12 , J13;
157 J21 , J22 , J23;
158 J31 , J32 , J33];
159

160 %% -------------------- Singular Value Decomposition ----------------
161

162 % Check for invalid Jacobian entries
163 if any(isnan(J_num), ’all ’) || any(isinf(J_num), ’all ’)
164 sigma_min_vals (idx) = NaN;
165 sigma_max_vals (idx) = NaN;
166 continue ;

46

167 end
168

169 % Perform Singular Value Decomposition
170 try
171 S = svd(J_num);
172 sigma_min_vals (idx) = min(S);
173 sigma_max_vals (idx) = max(S);
174 catch
175 % In case SVD fails , assign NaN
176 sigma_min_vals (idx) = NaN;
177 sigma_max_vals (idx) = NaN;
178 end
179 end
180

181 %% ----------------------- Post - Processing -----------------------------
182

183 % Remove NaN entries resulting from invalid Jacobians
184 valid_indices = ˜isnan(sigma_min_vals) & ˜isnan(sigma_max_vals);
185 valid_sigma_min = sigma_min_vals (valid_indices);
186 valid_sigma_max = sigma_max_vals (valid_indices);
187

188 % Ensure there are valid entries to compute GII
189 if isempty (valid_sigma_min) || isempty (valid_sigma_max)
190 error(’No valid Jacobian matrices were found. Check the system parameters

and joint ranges .’);
191 end
192

193 % Calculate min_sigma_min and max_sigma_max
194 min_sigma_min = min(valid_sigma_min);
195 max_sigma_max = max(valid_sigma_max);
196

197 % Calculate GII
198 GII = min_sigma_min / max_sigma_max ;
199

200 % Display the Global Isotropy Index
201 fprintf (’Global Isotropy Index (GII): %.4f\n’, GII);
202

203 %% ------------------------ Workspace Visualization ---------------------
204

205 % Preallocate arrays for workspace positions
206 x_workspace = zeros(length (valid_sigma_min), 1);
207 y_workspace = zeros(length (valid_sigma_min), 1);
208

209 % Recompute x and y for valid configurations
210 parfor idx = 1: length (valid_sigma_min)
211 % Retrieve the linear index of the valid configuration
212 original_idx = find(valid_indices , 1) + idx - 1;
213

214 % Convert linear index to subscript indices
215 [i, j, k] = ind2sub ([num_samples , num_samples , num_samples],

find(valid_indices , 1, ’first ’) + idx - 1);
216

217 % Retrieve joint angles
218 q1 = q1_samples (i);
219 q2 = q2_samples (j);
220 q3 = q3_samples (k);
221

222 % Compute intermediate cosine and sine values
223 c11 = r * cos(q1);
224 c12 = r * sin(q1);
225 c21 = r * cos(q2);
226 c22 = r * sin(q2);
227 c31 = r * cos(q3);

47

228 c32 = r * sin(q3);
229

230 % Define K, L, and M based on forward kinematics
231 K = c12 + c32 + sqrt3 * c31 - 2 * c22 - sqrt3 * c11;
232 L = c11 + c31 + sqrt3 * c12 - 2 * c21 - sqrt3 * c32;
233 M = L * (L - sqrt3 * K) * c12 - L * (K + sqrt3 * L) * c11 - (L - sqrt3 *

K) * (L * c22 - K * c21);
234

235 % Calculate x and y
236 denom_xy = sqrt3 * (Kˆ2 + Lˆ2);
237 if denom_xy == 0
238 x_workspace (idx) = NaN;
239 y_workspace (idx) = NaN;
240 else
241 x_workspace (idx) = -M / denom_xy ;
242 y_workspace (idx) = c22 - (K / L) * c21 - (K * M) / (sqrt3 * L * (Kˆ2 +

Lˆ2));
243 end
244 end
245

246 % Remove any NaN entries from workspace positions
247 valid_workspace = ˜isnan(x_workspace) & ˜isnan(y_workspace);
248 x_workspace = x_workspace (valid_workspace);
249 y_workspace = y_workspace (valid_workspace);
250 workspace_sigma_min = valid_sigma_min (valid_workspace);
251

252 % Plot the reachable workspace
253 figure ;
254 scatter (x_workspace , y_workspace , 10, workspace_sigma_min , ’filled ’);
255 colorbar ;
256 title(’Workspace Visualization (x vs y)’);
257 xlabel (’x (mm)’);
258 ylabel (’y (mm)’);
259 grid on;
260 axis equal;
261 colormap jet;
262 caxis ([min_sigma_min , max_sigma_max]);
263 colorTitleHandle = get(colorbar , ’Title ’);
264 colorTitleString = ’Minimum \sigma ’;
265 set(colorTitleHandle , ’String ’, colorTitleString);
266

267

268 colorTitleString = ’Minimum \sigma ’;
269 set(colorTitleHandle , ’String ’, colorTitleString);

48

Appendix E: Autolev Code for Dynamic Derivations
This appendix contains the Autolev code used for deriving the dynamic equations of motion for the
3RRP mechanism. Separate implementations are provided for Kane’s and Lagrange’s methods.

E.1 Kane’s Method
The following Autolev code derives the dynamic equations of motion for the 3RRP mechanism using
Kane’s method. This approach is efficient for systems with a large number of constraints and simplifies
the computation by focusing on non-inertial forces.

Listing 3: Autolev Code for Kinematics and Dynamics
1

2 % File: RRP_Kane .al [http :// www. autolev .com]
3 % Date: 31/12/2024
4 % Author : Yunus Emre Danabas / Sezer Kocaekiz / Gizem Doga Filiz
5 % Question : 3
6 % --
7 % Default settings
8 AutoEpsilon 1.0E -14 % Rounds off to nearest integer
9 AutoZ OFF % Turn ON for large problems

10 Digits 7 % Number of digits displayed for numbers
11 DEGREES ON
12 UnitSystem kg , meter , sec
13 % --
14 % Newtonian , bodies , frames , particles , points
15 Newtonian N
16 Bodies S,T,V,E
17 Frame A,B
18 Points O,Z,P,Q,R
19 Variables s{3}’’, q{3} ’’, X’’,Y’’, theta ’’
20 MotionVariables ’ u{9}’ % Configuration variables
21 % --
22 % Variables , constants , and specified
23 Specified FE{3}, TS1 , TT1 , TV1 , TZ % Contact forces
24 Constants L
25 Constants g=9.81
26 % ZEE_NOT = [FG1 ,FG2 ,FG3]
27 % --
28 % Mass and inertia
29 Mass S=mS , T=mT , V=mV , E=mE
30 Inertia S, IS11 , IS22 , IS33
31 Inertia T, IT11 , IT22 , IT33
32 Inertia V, IV11 , IV22 , IV33
33 Inertia E, IE11 , IE22 , IE33
34 % --
35 % Geometry relating unit vectors
36 SIMPROT (N,T,3,q1)
37 SIMPROT (N,S,3,q2)
38 SIMPROT (N,V,3,q3)
39 SIMPROT (N,E,3, theta)
40

41 SIMPROT (E,A ,3 ,60)
42 SIMPROT (E,B ,3 , -60)
43 % --
44 % Kinematical differential equations
45 q1 ’ = u1
46 q2 ’ = u2
47 q3 ’ = u3
48

49 s1 ’ = u4
50 s2 ’ = u5
51 s3 ’ = u6

49

52

53 x’ = u7
54 y’ = u8
55 theta ’ = u9
56

57 % --
58 % Position vectors
59 P_No_O > = 0>
60 P_O_Q > = l*S1 >
61 P_O_P > = l*T1 >
62 P_O_R > = l*V1 >
63

64 P_Z_P > = s1*A1 >
65 P_Q_Z > = s2*E1 >
66 P_Z_R > = s3*B1 >
67

68 P_O_So > = (0.33* L)*S1 >
69 P_O_To > = (0.33* L)*T1 >
70 P_O_Vo > = (0.33* L)*V1 >
71

72 P_Z_Eo > = 0>
73 P_Z_Ao > = 0>
74 P_Z_Bo > = 0>
75

76 P_O_Z > = x*N1 > + y*N2 >
77

78 % --
79 % Configuration Constraints
80 LOOP1 > = P_Z_Q > + P_Q_O > + P_O_Z >
81 LOOP2 > = P_Z_R > + P_R_O > +P_O_Z >
82 LOOP3 > = P_Z_P > + P_P_O > + P_O_Z >
83

84 ZeroConfig [1] = DOT(LOOP1 >,N1 >)
85 ZeroConfig [2] = DOT(LOOP1 >,N2 >)
86 ZeroConfig [3] = DOT(LOOP2 >,N1 >)
87 ZeroConfig [4] = DOT(LOOP2 >,N2 >)
88 ZeroConfig [5] = DOT(LOOP3 >,N1 >)
89 ZeroConfig [6] = DOT(LOOP3 >,N2 >)
90 % --
91 % Angular velocities
92 w_T_N > = q1 ’*T3 >
93 w_S_N > = q2 ’*S3 >
94 w_V_N > = q3 ’*V3 >
95

96 w_E_N > = theta ’*E3 >
97

98 w_B_E > = 0>
99 w_A_E > = 0>

100 % --
101 % Velocities
102

103 % Velocities
104 V_O_N > = 0>
105

106 V_Q_N > = dt(P_No_Q >,N)
107 V_P_N > = dt(P_No_P >,N)
108 V_R_N > = dt(P_No_R >,N)
109

110 V_Z_N > = dt(P_O_Z >,N) % x’ y’ buradan gelmeli
111

112 V_So_N > = dt(P_No_So >,N)
113 V_To_N > = dt(P_No_To >,N)
114 V_Vo_N > = dt(P_No_Vo >,N)

50

115

116 V_Eo_N > = V_Z_N >
117 % --
118 % Motion constraints
119 dLOOP1 > = dt(LOOP1 >,N)
120 dLOOP2 > = dt(LOOP2 >,N)
121 dLOOP3 > = dt(LOOP3 >,N)
122

123 Dependent [1] = dot(dLOOP1 >,N1 >)
124 Dependent [2] = dot(dLOOP1 >,N2 >)
125

126 Dependent [3] = dot(dLOOP2 >,N1 >)
127 Dependent [4] = dot(dLOOP2 >,N2 >)
128

129 Dependent [5] = dot(dLOOP3 >,N1 >)
130 Dependent [6] = dot(dLOOP3 >,N2 >)
131

132 Constrain (Dependent [u4 ,u5 ,u6 , u7 ,u8 ,u9])
133 % --
134 % Angular accelations
135 ALF_T_N > = dt(w_T_N >,N)
136 ALF_S_N > = dt(w_S_N >,N)
137 ALF_V_N > = dt(w_V_N >,N)
138 ALF_E_N > = dt(w_E_N >,N)
139 % --
140 % Accelerations of particles and mass centers of bodies
141 % A_No_N > = 0>
142 A_To_N > = dt(V_To_N >,N)
143 A_So_N > = dt(V_So_N >,N)
144 A_Vo_N > = dt(V_Vo_N >,N)
145

146 A_Z_N > = dt(V_Z_N >,N)
147 A_Eo_N > = A_Z_N >
148

149

150 A_P_N > = dt(V_P_N >,N)
151 A_Q_N > = dt(V_Q_N >,N)
152 A_R_N > = dt(V_R_N >,N)
153

154 % --
155 % Forces
156 Gravity (-g*N3 >)
157 Force_Z > = FE1*N1 > + FE2*N2 >
158 Torque_E > = TZ*N3 >
159 % --
160 % Torques
161 Torque_S > = TS1*S3 >
162 Torque_T > = TT1*T3 >
163 Torque_V > = TV1*V3 >
164

165 % --
166

167 JACOBIAN = [D(u7 ,u1), D(u7 ,u2),D(u7 ,u3); D(u8 ,u1), D(u8 ,u2),D(u8 ,u3);
D(u9 ,u1), D(u9 ,u2),D(u9 ,u3)]

168

169 % --
170 % Equations of motion
171 Zero = Fr() + FrStar ()
172 Kane()
173

174 % --
175

176

51

177 Input tFinal =10, integStp =0.1 , absErr =1.0E-07, relErr =1.0E -07
178 Input L = 200 mm
179 Input IS33= 0.00012 , IT33= 0.00012 , IV33= 0.00012 , IE33= 0.000050
180

181 Input q1=0 deg , q2 =120 deg , q3= 240 deg
182 Input x= 0 mm , y= 0 mm , theta = 0 deg
183 Input TA = 0, TD = 0, uA = 0, uD = 0, Fx = 0, Fy = 0
184

185 % --
186 % Quantities to be output from CODE
187 Output t sec , x mm , y mm , theta deg , u7 mm/s, u8 mm/s, u9 rad/s , q1 rad , q2

rad , q3 rad , u1 rad/s, u2 rad/s, u3 rad/s
188

189

190 code dynamics () dinamik_yunus .m
191

192

193 % Record Autolev responses
194 Save RRP_Kane_Results_Yunus .all

E.2 Lagrange’s Method
The following Autolev code derives the dynamic equations of motion for the 3RRP mechanism using
Lagrange’s method. This approach is based on energy principles and is well-suited for systems with
relatively simple constraint equations.

Listing 4: Autolev Code for Dynamic Derivation Using Lagrange’s Method
1

2 % File: RRP_Lag .al [http :// www. autolev .com]
3 % Date: 31/12/2024
4 % Author : Yunus Emre Danabas / Sezer Kocaekiz / Gizem Doga Filiz
5 % Question : 3
6 % --
7 % Default settings
8 AutoEpsilon 1.0E -14 % Rounds off to nearest integer
9 AutoZ ON % Turn ON for large problems

10 Digits 7 % Number of digits displayed for numbers
11 DEGREES ON
12 % --
13 % Newtonian , bodies , frames , particles , points
14 Newtonian N
15 Bodies S,T,V,E
16 Frame A,B
17 Points O,Z,P,Q,R
18 Variables s{3}’’, q{3} ’’, X’’,Y’’, theta ’’
19 Variables lambda {6} % Lagrangian multipliers
20 Constants alpha , beta % Baumgarte stabilization gains
21 %--
22 % Variables , constants , and specified
23 Specified FE{3}, TS1 , TT1 , TV1 % Contact forces
24 Constants L
25 Constants g=9.81
26 % ZEE_NOT = [FG1 ,FG2 ,FG3]
27 %--
28 % Mass and inertia
29 Mass S=mS , T=mT , V=mV , E=mE
30 Inertia S, IS11 , IS22 , IS33
31 Inertia T, IT11 , IT22 , IT33
32 Inertia V, IV11 , IV22 , IV33
33 Inertia E, IE11 , IE22 , IE33
34 %--
35 % Geometry relating unit vectors

52

36 SIMPROT (N,T,3,q1)
37 SIMPROT (N,S,3,q2)
38 SIMPROT (N,V,3,q3)
39 SIMPROT (N,E,3, theta)
40

41 SIMPROT (E,A ,3 ,60)
42 SIMPROT (E,B ,3 , -60)
43 %--
44 % Position vectors
45 P_No_O > = 0>
46 P_O_Q > = l*S1 >
47 P_O_P > = l*T1 >
48 P_O_R > = l*V1 >
49

50 P_Z_P > = s1*A1 >
51 P_Q_Z > = s2*E1 >
52 P_Z_R > = s3*B1 >
53

54 P_O_So > = (0.33* L)*S1 >
55 P_O_To > = (0.33* L)*T1 >
56 P_O_Vo > = (0.33* L)*V1 >
57

58 P_Z_Eo > = 0>
59 P_Z_Ao > = 0>
60 P_Z_Bo > = 0>
61

62 P_O_Z > = x*N1 > + y*N2 >
63

64 %--
65 % Configuration Constraints
66 LOOP1 > = P_Z_Q > + P_Q_O > + P_O_Z >
67 LOOP2 > = P_Z_R > + P_R_O > +P_O_Z >
68 LOOP3 > = P_Z_P > + P_P_O > + P_O_Z >
69

70 ZeroConfig [1] = DOT(LOOP1 >,N1 >)
71 ZeroConfig [2] = DOT(LOOP1 >,N2 >)
72 ZeroConfig [3] = DOT(LOOP2 >,N1 >)
73 ZeroConfig [4] = DOT(LOOP2 >,N2 >)
74 ZeroConfig [5] = DOT(LOOP3 >,N1 >)
75 ZeroConfig [6] = DOT(LOOP3 >,N2 >)
76 %--
77 % Angular velocities
78 w_T_N > = q1’*T3 >
79 w_S_N > = q2 ’*S3 >
80 w_V_N > = q3 ’*V3 >
81

82 w_E_N > = theta ’*E3 >
83

84 w_B_E > = 0>
85 w_A_E > = 0>
86 % --
87 % Velocities
88

89 % Velocities
90 V_O_N > = 0>
91

92 V_Q_N > = dt(P_No_Q >,N)
93 V_P_N > = dt(P_No_P >,N)
94 V_R_N > = dt(P_No_R >,N)
95

96 V_Z_N > = dt(P_O_Z >,N) % x’ y’ buradan gelmeli
97

98 V_So_N > = dt(P_No_So >,N)

53

99 V_To_N > = dt(P_No_To >,N)
100 V_Vo_N > = dt(P_No_Vo >,N)
101

102 V_Eo_N > = V_Z_N >
103

104 % --
105 % Motion constraints
106 dLOOP1 > = dt(LOOP1 >,N)
107 dLOOP2 > = dt(LOOP2 >,N)
108 dLOOP3 > = dt(LOOP3 >,N)
109

110 Dependent [1] = dot(dLOOP1 >,N1 >)
111 Dependent [2] = dot(dLOOP1 >,N2 >)
112

113 Dependent [3] = dot(dLOOP2 >,N1 >)
114 Dependent [4] = dot(dLOOP2 >,N2 >)
115

116 Dependent [5] = dot(dLOOP3 >,N1 >)
117 Dependent [6] = dot(dLOOP3 >,N2 >)
118

119 % --
120 % Angular accelations
121 ALF_T_N > = dt(w_T_N >,N)
122 ALF_S_N > = dt(w_S_N >,N)
123 ALF_V_N > = dt(w_V_N >,N)
124 ALF_E_N > = dt(w_E_N >,N)
125 % --
126 % Accelerations of particles and mass centers of bodies
127 % A_No_N > = 0>
128 A_To_N > = dt(V_To_N >,N)
129 A_So_N > = dt(V_So_N >,N)
130 A_Vo_N > = dt(V_Vo_N >,N)
131 A_Z_N > = dt(V_Z_N >,N)
132 A_Eo_N > = A_Z_N >
133

134 A_P_N > = dt(V_P_N >,N)
135 A_Q_N > = dt(V_Q_N >,N)
136 A_R_N > = dt(V_R_N >,N)
137

138 % --
139 % Forces
140 Gravity (-g*N3 >)
141 Force_Z > = FE1*N1 > + FE2*N2 > + FE3*N3 >
142 % --
143 % Torques
144 Torque_S > = TS1*S3 >
145 Torque_T > = TT1*T3 >
146 Torque_V > = TV1*V3 >
147 % --
148

149 % --
150 % Langrangian and Generalized Force
151 KE = KE() % Kinetic energy
152 PE = 0
153 Lag = KE - PE
154 explicit (Lag)
155

156 ddLag =
[dt(d(Lag ,q1 ’));dt(d(Lag ,q2 ’));dt(d(Lag ,q3 ’));dt(d(Lag ,s1 ’));dt(d(Lag ,s2 ’));dt(d(Lag ,s3 ’));dt(d(Lag ,X’));dt(d(Lag ,Y’));dt(d(Lag ,theta ’))]

157

158 dLag =
[d(Lag ,q1);d(Lag ,q2);d(Lag ,q3);d(Lag ,s1);d(Lag ,s2);d(Lag ,s3);d(Lag ,X);d(Lag ,Y);d(Lag ,theta)]

159

54

160 Work = dot(W_S_N >,Torque_S >) + dot(W_T_N >,Torque_T >) + dot(W_V_N >,Torque_V >) +
dot(V_Z_N >,Force_Z >)

161

162 Q =
[coef(Work ,q1 ’);coef(Work ,q2 ’);coef(Work ,q3 ’);coef(Work ,s1 ’);coef(Work ,s2 ’);coef(Work ,s3 ’);coef(Work ,X’);coef(Work ,Y’);coef(Work ,theta ’)]

163

164 % --
165 % EoM for the Unconstaint System
166 Zero_EoM = ddLag - dLag - Q
167 % --
168 % Supplementary code to check the EoM
169 LHS = ddLag - dLag
170 RHS = Q
171

172 % --
173 % DAEs for the Constrained System
174 Lambda [1] = lambda1
175 Lambda [2] = lambda2
176 Lambda [3] = lambda3
177 Lambda [4] = lambda4
178 Lambda [5] = lambda5
179 Lambda [6] = lambda6
180

181 dZeroConfig [1 ,1] = d(ZeroConfig [1],q1)
182 dZeroConfig [1 ,2] = d(ZeroConfig [1],q2)
183 dZeroConfig [1 ,3] = d(ZeroConfig [1],q3)
184 dZeroConfig [1 ,4] = d(ZeroConfig [1],s1)
185 dZeroConfig [1 ,5] = d(ZeroConfig [1],s2)
186 dZeroConfig [1 ,6] = d(ZeroConfig [1],s3)
187 dZeroConfig [1 ,7] = d(ZeroConfig [1],X)
188 dZeroConfig [1 ,8] = d(ZeroConfig [1],Y)
189 dZeroConfig [1 ,9] = d(ZeroConfig [1], theta)
190

191 dZeroConfig [2 ,1] = d(ZeroConfig [2],q1)
192 dZeroConfig [2 ,2] = d(ZeroConfig [2],q2)
193 dZeroConfig [2 ,3] = d(ZeroConfig [2],q3)
194 dZeroConfig [2 ,4] = d(ZeroConfig [2],s1)
195 dZeroConfig [2 ,5] = d(ZeroConfig [2],s2)
196 dZeroConfig [2 ,6] = d(ZeroConfig [2],s3)
197 dZeroConfig [2 ,7] = d(ZeroConfig [2],X)
198 dZeroConfig [2 ,8] = d(ZeroConfig [2],Y)
199 dZeroConfig [2 ,9] = d(ZeroConfig [2], theta)
200

201

202 % --------
203 dZeroConfig [3 ,1] = d(ZeroConfig [3],q1)
204 dZeroConfig [3 ,2] = d(ZeroConfig [3],q2)
205 dZeroConfig [3 ,3] = d(ZeroConfig [3],q3)
206 dZeroConfig [3 ,4] = d(ZeroConfig [3],s1)
207 dZeroConfig [3 ,5] = d(ZeroConfig [3],s2)
208 dZeroConfig [3 ,6] = d(ZeroConfig [3],s3)
209 dZeroConfig [3 ,7] = d(ZeroConfig [3],X)
210 dZeroConfig [3 ,8] = d(ZeroConfig [3],Y)
211 dZeroConfig [3 ,9] = d(ZeroConfig [3], theta)
212

213 dZeroConfig [4 ,1] = d(ZeroConfig [4],q1)
214 dZeroConfig [4 ,2] = d(ZeroConfig [4],q2)
215 dZeroConfig [4 ,3] = d(ZeroConfig [4],q3)
216 dZeroConfig [4 ,4] = d(ZeroConfig [4],s1)
217 dZeroConfig [4 ,5] = d(ZeroConfig [4],s2)
218 dZeroConfig [4 ,6] = d(ZeroConfig [4],s3)
219 dZeroConfig [4 ,7] = d(ZeroConfig [4],X)
220 dZeroConfig [4 ,8] = d(ZeroConfig [4],Y)

55

221 dZeroConfig [4 ,9] = d(ZeroConfig [4], theta)
222

223

224 % --------
225

226 dZeroConfig [5 ,1] = d(ZeroConfig [5],q1)
227 dZeroConfig [5 ,2] = d(ZeroConfig [5],q2)
228 dZeroConfig [5 ,3] = d(ZeroConfig [5],q3)
229 dZeroConfig [5 ,4] = d(ZeroConfig [5],s1)
230 dZeroConfig [5 ,5] = d(ZeroConfig [5],s2)
231 dZeroConfig [5 ,6] = d(ZeroConfig [5],s3)
232 dZeroConfig [5 ,7] = d(ZeroConfig [5],X)
233 dZeroConfig [5 ,8] = d(ZeroConfig [5],Y)
234 dZeroConfig [5 ,9] = d(ZeroConfig [5], theta)
235

236 dZeroConfig [6 ,1] = d(ZeroConfig [6],q1)
237 dZeroConfig [6 ,2] = d(ZeroConfig [6],q2)
238 dZeroConfig [6 ,3] = d(ZeroConfig [6],q3)
239 dZeroConfig [6 ,4] = d(ZeroConfig [6],s1)
240 dZeroConfig [6 ,5] = d(ZeroConfig [6],s2)
241 dZeroConfig [6 ,6] = d(ZeroConfig [6],s3)
242 dZeroConfig [6 ,7] = d(ZeroConfig [6],X)
243 dZeroConfig [6 ,8] = d(ZeroConfig [6],Y)
244 dZeroConfig [6 ,9] = d(ZeroConfig [6], theta)
245

246 Zero_Constrained_EoM = Zero_EoM + transpose (dZeroConfig)* Lambda
247 % 9x1 6x9 6x1
248 % 9x1 9x6 6x1
249 % --
250 % Units system for CODE input/ output conversions
251 UnitSystem kg ,meter ,sec
252 % --
253 % Quantities to be output from CODE
254 Output t sec , q1 rad , q2 rad , q3 rad , s1 m, s2 m, s3 m, X m, Y m, theta rad
255 Output q1 ’’ rad/sˆ2, q2’’ rad/sˆ2, q3’’ rad/sˆ2
256 Output lambda1 N*m, lambda2 N*m, lambda3 N*m, lambda4 N*m, lambda5 N*m,

lambda6 N*m
257 %--
258 % Baumgarte Stabilization
259 q_vec = [q1; q2; q3; s1; s2; s3; x; y; theta]
260

261 temp = dZeroConfig *dt(q_vec)
262 %6x1 6x9 9x1
263

264 dtemp [1 ,1] = d(temp [1],q1)
265 dtemp [1 ,2] = d(temp [1],q2)
266 dtemp [1 ,3] = d(temp [1],q3)
267 dtemp [1 ,4] = d(temp [1],s1)
268 dtemp [1 ,5] = d(temp [1],s2)
269 dtemp [1 ,6] = d(temp [1],s3)
270 dtemp [1 ,7] = d(temp [1],X)
271 dtemp [1 ,8] = d(temp [1],Y)
272 dtemp [1 ,9] = d(temp [1], theta)
273

274 dtemp [2 ,1] = d(temp [2],q1)
275 dtemp [2 ,2] = d(temp [2],q2)
276 dtemp [2 ,3] = d(temp [2],q3)
277 dtemp [2 ,4] = d(temp [2],s1)
278 dtemp [2 ,5] = d(temp [2],s2)
279 dtemp [2 ,6] = d(temp [2],s3)
280 dtemp [2 ,7] = d(temp [2],X)
281 dtemp [2 ,8] = d(temp [2],Y)
282 dtemp [2 ,9] = d(temp [2], theta)

56

283

284 dtemp [3 ,1] = d(temp [3],q1)
285 dtemp [3 ,2] = d(temp [3],q2)
286 dtemp [3 ,3] = d(temp [3],q3)
287 dtemp [3 ,4] = d(temp [3],s1)
288 dtemp [3 ,5] = d(temp [3],s2)
289 dtemp [3 ,6] = d(temp [3],s3)
290 dtemp [3 ,7] = d(temp [3],X)
291 dtemp [3 ,8] = d(temp [3],Y)
292 dtemp [3 ,9] = d(temp [3], theta)
293

294 dtemp [4 ,1] = d(temp [4],q1)
295 dtemp [4 ,2] = d(temp [4],q2)
296 dtemp [4 ,3] = d(temp [4],q3)
297 dtemp [4 ,4] = d(temp [4],s1)
298 dtemp [4 ,5] = d(temp [4],s2)
299 dtemp [4 ,6] = d(temp [4],s3)
300 dtemp [4 ,7] = d(temp [4],X)
301 dtemp [4 ,8] = d(temp [4],Y)
302 dtemp [4 ,9] = d(temp [4], theta)
303

304 dtemp [5 ,1] = d(temp [5],q1)
305 dtemp [5 ,2] = d(temp [5],q2)
306 dtemp [5 ,3] = d(temp [5],q3)
307 dtemp [5 ,4] = d(temp [5],s1)
308 dtemp [5 ,5] = d(temp [5],s2)
309 dtemp [5 ,6] = d(temp [5],s3)
310 dtemp [5 ,7] = d(temp [5],X)
311 dtemp [5 ,8] = d(temp [5],Y)
312 dtemp [5 ,9] = d(temp [5], theta)
313

314 dtemp [6 ,1] = d(temp [6],q1)
315 dtemp [6 ,2] = d(temp [6],q2)
316 dtemp [6 ,3] = d(temp [6],q3)
317 dtemp [6 ,4] = d(temp [6],s1)
318 dtemp [6 ,5] = d(temp [6],s2)
319 dtemp [6 ,6] = d(temp [6],s3)
320 dtemp [6 ,7] = d(temp [6],X)
321 dtemp [6 ,8] = d(temp [6],Y)
322 dtemp [6 ,9] = d(temp [6], theta)
323

324

325

326

327 first_term = -dtemp*dt(q_vec)
328 % 6x1 6x9 9x1
329 second_term = -2*dt(dZeroConfig)*dt(q_vec)
330 % 6x1 6x9 9x1
331 third_term = -dt(dt(ZeroConfig))
332 fourth_term = -alpha *(dZeroConfig *dt(q_vec)-third_term)
333 fifth_term = -beta* ZeroConfig
334

335 gamma = first_term + second_term + third_term + fourth_term + fifth_term
336 % 6x1
337 extra_term = transpose (dZeroConfig)* Lambda
338 % 9x1 9x6 6x1
339

340 algebraic_eqn_ft = dZeroConfig *dt(dt(q_vec))
341 % 6x9 9x1
342

343 eqn [1] = LHS [1] - RHS [1] + extra_term [1]
344 eqn [2] = LHS [2] - RHS [2] + extra_term [2]
345 eqn [3] = LHS [3] - RHS [3] + extra_term [3]

57

346 eqn [4] = LHS [4] - RHS [4] + extra_term [4]
347 eqn [5] = LHS [5] - RHS [5] + extra_term [5]
348 eqn [6] = LHS [6] - RHS [6] + extra_term [6]
349 eqn [7] = LHS [7] - RHS [7] + extra_term [7]
350 eqn [8] = LHS [8] - RHS [8] + extra_term [8]
351 eqn [9] = LHS [9] - RHS [9] + extra_term [9]
352

353 eqn [10] = algebraic_eqn_ft [1] - gamma [1]
354 eqn [11] = algebraic_eqn_ft [2] - gamma [2]
355 eqn [12] = algebraic_eqn_ft [3] - gamma [3]
356 eqn [13] = algebraic_eqn_ft [4] - gamma [4]
357 eqn [14] = algebraic_eqn_ft [5] - gamma [5]
358 eqn [15] = algebraic_eqn_ft [6] - gamma [6]
359

360

361 Zee_Not = [q1’’, q2’’, q3’’, s1’’, s2’’, s3’’, X’’, Y’’,theta ’’, lambda1 ,
lambda2 , lambda3 , lambda4 , lambda5 , lambda6]

362

363

364 solve(eqn , [dt(dt(q_vec)); Lambda])
365 %code ode () RRP_lagrange .m
366 %---
367 % Record Autolev responses
368 Save RRP_Lag_Results_Yunus .all

58

	Introduction
	Problem Definition
	System Overview
	Mechanism Description
	Scope of Analysis

	Analytical Derivations and Results
	Kinematic Analysis (3RRP Focus)
	Symbolic Derivations
	Workspace Calculation
	Kinematic Jacobian
	Global Isotropy Index (GII)

	Dynamic Modeling
	System Setup in Autolev
	Kane's Method
	Lagrangian Formulation in Autolev with Baumgarte Stabilization
	Method Comparison
	Simulation and Validation Using Kane’s Dynamic Code
	Kinematic Simulation in Simulink

	Discussion
	Overview of Key Findings
	Analysis of Kinematic Results
	Interpretation of Dynamic Modeling Outcomes
	Comparisons and Correlations
	Practical Implications for 3RRP Mechanism
	Reflections and Future Directions
	Summary of the Discussion

	Conclusion

